Походы Транспорт Экономные печи

Прогиб и угол поворота поперечного сечения балки. Архив рубрики: Задачи на определение перемещений. Растяжения и чистого косого изгиба

2013_2014 учебный год II семестр Лекция № 2.6 стр. 12

Деформация балок при изгибе. Дифференциальное уравнение изогнутой оси балки. Метод начальных параметров. Универсальное уравнение упругой линии.

6. Деформация балок при плоском изгибе

6.1. Основные понятия и определения

Рассмотрим деформацию балки при плоском изгибе. Ось балки под действием нагрузки искривляется в плоскости действия сил (плоскость x 0y ), при этом поперечные сечения поворачиваются и смещаются на некоторую величину. Искривленная ось балки при изгибе называется изогнутой осью или упругой линией .

Деформацию балок при изгибе будем описывать двумя параметрами:

    прогиб (y ) – смещение центра тяжести сечения балки по направлению, перпендикулярному

рис. 6.1 к ее оси.

Не путать прогиб y с координатой y точек сечения балки!

Наибольший прогиб балки называется стрелой прогиба (f = y max );

2) угол поворота сечения () – угол, на который сечение поворачивается относительно своего первоначального положения (или угол между касательной к упругой линии и первоначальной осью балки).

В общем случае величина прогиба балки в данной точке является функцией координаты z и может быть записана в виде следующего уравнения:

Тогда угол между касательной к изогнутой оси балки и осью x будет определяться из следующего выражения:

.

Ввиду малости углов и перемещений, можем считать, что

угол поворота сечения есть первая производная от прогиба балки по абсциссе сечения.

6.2. Дифференциальное уравнение изогнутой оси балки

Исходя из физической природы явления изгиба, можем утверждать, что изогнутая ось непрерывной балки должна быть непрерывной и гладкой (неимеющей изломов) кривой. При этом деформация того или иного участка балки определяется искривлением его упругой линии, то есть кривизной оси балки.

Ранее нами была получена формула для определения кривизны бруса (1/ρ) при изгибе

.

С другой стороны, из курса высшей математики известно, что уравнение кривизны плоской кривой выглядит следующим образом:

.

Приравняв правые части данных выражений, получим дифференциальное уравнение изогнутой оси балки, которое называется точным уравнением изогнутой оси бруса

В координатной системе прогибов z 0 y , когда ось y направлена вверх, знак момента определяет знак второй производной от y по z .

Интегрирование данного уравнения, очевидно, представляет некоторые трудности. Поэтому его, как правило, записывают в упрощенной форме, пренебрегая величиной в скобках по сравнению с единицей.

Тогда дифференциальное уравнение упругой линии балки будем рассматривать в виде:

(6.1)

Решение дифференциального уравнения (6.1) найдем, интегрируя обе его части по переменной z :

(6.2)

(6.3)

Постоянные интегрирования C 1 , D 1 находят из граничных условий – условий закрепления балки, при этом для каждого участка балки будут определяться свои постоянные.

Рассмотрим процедуру решения данных уравнений на конкретном примере.

Дано:

Консольная балка длиной l , загруженная поперечной силой F . Материал балки (E ), форму и размеры ее сечения (I x ) также считаем известными.

Определить закон изменения угла поворота (z ) и прогиба y (z ) балки по ее длине и их значения в характерных сечениях.

Решение

а) определим реакции в заделке

б) методом сечений определим внутренний изгибающий момент:

в) определим угол поворота сечений балки

Постоянную C 1 найдем из условий закрепления, а именно – в жесткой заделке угол поворота равен нулю, тогда


(0) = 0  C 1 =0.

Найдем угол поворота свободного конца балки (z = l ) :

Знак «минус» показывает, что сечение повернулось по часовой стрелке.

г) определим прогибы балки:

Постоянную D 1 найдем из условий закрепления, а именно – в жесткой заделке прогиб равен нулю, тогда

y(0) = 0 + D 1 D 1 = 0

Найдем прогиб свободного конца балки (x = l )

.

Знак «минус» показывает, что сечение опустилось вниз.

Определение перемещений в балках аналитическим способом

Пример 1

Условие задачи

Для балки, показанной на рис. 4.20, а , требуется найти прогиб в сечении С , угол поворота в сечении В аналитическим способом и проверить условие жесткости, если допускаемый прогиб равен l /100. Балка выполнена из дерева и имеет поперечное сечение из трех бревен радиусом 12 см. (Подбор сечения этой балки см. в разд. 4.1.2, пример 1.)

Решение

Для определения перемещений балки аналитическим способом составим дифференциальное уравнение изогнутой оси (4.16), используя правила Клебша записи выражения для изгибающего момента. Начало координат в рассматриваемой задаче рациональнее выбрать справа (в заделке). Распределенную нагрузку , которая не доходит до левого конца балки, продлим до сечения С (рис. 4.20, в ). Выражение для изгибающего момента будет иметь такой вид:

.

Подставим это выражение в дифференциальное уравнение (4.16) и проинтегрируем его два раза:

;

;

.

Для определения постоянных С и D запишем граничные условия: в заделке (в сечении А , где находится начало координат) угол поворота и прогиб балки равны нулю, то есть

И .

Подставляя эти условия в выражения для угла поворота и прогиба на первом участке, найдем, что

Теперь можно определить заданные перемещения. Для определения угла поворота в сечении В подставим в выражение для угла поворота на первом участке (только до черты с номером I) значение :

В соответствии с правилом знаков отрицательный знак угла поворота для выбранного начала координат х справа означает, что поворот сечения происходит по часовой стрелке.

В сечении С , где требуется найти прогиб, координата х равна , и это сечение находится на третьем участке балки, поэтому подставляем х = 4 м в выражение для прогибов, используя слагаемые на всех трех участках:

кН·м 3 .

Знак минус у найденного прогиба показывает, что сечение С перемещается вверх. Покажем найденные перемещения на изогнутой оси балки. Чтобы нарисовать ось балки после деформации, построим эпюру изгибающих моментов (рис. 4.20, б ). Положительный знак эпюры М на участке показывает, что балка на этом участке изгибается выпуклостью вниз, при отрицательном знаке М изогнутая ось имеет выпуклость вверх. Кроме того, деформированная ось балки должна удовлетворять условиям закрепления: в нашем случае на правом конце балка имеет жесткое защемление, и, как уже отмечалось при записи граничных условий, прогиб и угол поворота в защемлении должны равняться нулю. На рис. 4.20, г изображена ось рассматриваемой балки после деформации, удовлетворяющая этим условиям. На изогнутой оси показаны найденные прогиб в сечении С и угол поворота сечения В с учетом их знаков.

В заключение сосчитаем прогиб балки в сантиметрах, угол поворота в радианах и проверим условие жесткости. Найдем жесткость ЕI рассматриваемой деревянной балки из трех бревен радиусом 12 см. Момент инерции поперечного сечения

см 4 .

Модуль упругости дерева Е = 10 4 МПа = 10 3 кН / см 2 . Тогда

Прогиб балки в сечении С

см,

а угол поворота сечения В

рад.

Очевидно (см. рис. 4.20, г ), что найденный прогиб балки в сечении С является максимальным, поэтому для проверки условия жесткости сравним его с допускаемым прогибом. Для балки длиной м допускаемый прогиб согласно условию см. Таким образом, максимальный прогиб см меньше допускаемого, и условие жесткости выполняется.

Пример 2

Условие задачи

В балке с двумя консолями, показанной на рис. 4.21, а надо найти угол поворота сечения А и прогиб сечения D , используя аналитический способ. Сечение балки – двутавр № 24.

Решение

Выберем начало отсчета координаты х на левом конце балки в точке А и запишем выражение для изгибающего момента на всех участках с учетом правил Клебша:

Подставим это выражение в дифференциальное уравнение изогнутой оси (4.16) и проинтегрируем его дважды:


Найдем произвольные постоянные С и D из граничных условий. В точках В и С , где находятся опоры, прогибы не возможны. Поэтому

Получили систему из двух уравнений с двумя неизвестными С и D . Решая эту систему, найдем С = 40 кН·м 2 , D = – 40 кН·м 3 . Проанализируем результат, используя геометрический смысл произвольных постоянных С и D . На рис. 4.21, в показана изогнутая ось балки, соответствующая эпюре изгибающих моментов и условиям закрепления. Точка А , находящаяся в начале координат, перемещается вверх, и поэтому следует ожидать, что будет иметь в соответствии с правилом знаков отрицательный знак. Сечение в точке А поворачивается по часовой стрелке, поэтому постоянная должна быть положительна. Полученные знаки С и D не противоречат проведенному анализу.

ТЕМА 6

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ИЗГИБЕ. РАСЧЕТ БАЛОК НА ЖЕСТКОСТЬ

6.1. Понятие об упругой линии. Прогиб и угол поворота. Дифференциальное уравнение упругой линии. Условие жесткости при изгибе

Чтобы судить о работе изгибаемых балок, недостаточно знать только напряжения, которые возникают в сечениях балки от заданной нагрузки. Вычисленные напряжения позволяют проверить прочность системы. Однако весьма прочные балки могут оказаться непригодными к эксплуатации из-за недостаточной жесткости. Если балка при нагружении сильно прогибается, то при эксплуатации сооружения, имеющего гибкие балки, появятся затруднения и, кроме того, могут возникнуть колебания балки с большими амплитудами, а вместе с тем и значительные дополнительные напряжения.

Под жесткостью следует понимать способность элеменов конструкций и деталей машин сопротивляться внешним нагрузкам без видимых деформаций. Расчет на жесткость заключается в оценке упругой податливости балки под действием приложенных нагрузок и подбор таких размеров поперечного сечения, при которых перемещения не будут превышать установленных нормами пределов. Для выполнения такого расчета необходимо научиться вычислять перемещения сечений балки под действием любой внешней нагрузки.

Рассмотрим деформацию балки при простом изгибе. Ось балки (Рис.6.1,а) под действием нагрузки, расположенной в одной из главных плоскостей инерции (в плоскости DIV_ADBLOCK65">

Точка https://pandia.ru/text/79/355/images/image003_20.gif" width="13" height="15">.gif" width="24" height="19 src=">.gif" width="13" height="15">. Если в точке провести касательную к оси изогнутой балки, то по отношению к первоначальному положению оси она будет повернута на угол . Одновременно на тот же угол повернется сечение в точке . Таким образом, три величины - , и являются компонентами перемещения произвольного поперечного сечения балки. Перемещение центра тяжести сечения по направлению, перпендикулярному к оси балки, называется прогибом . Наибольший прогиб называется стрелой прогиба и обозначается буквой .

Угол https://pandia.ru/text/79/355/images/image010_4.gif" width="24" height="19 src=">.

Font-weight:normal"> Рис.6.1

Проверка жесткости балок сводится к требованию, в соответствии с которым наибольший прогиб font-weight:normal"> .

Число https://pandia.ru/text/79/355/images/image014_4.gif" width="17" height="15 src="> принимается равной 1000.

Отсюда видно, что прогибы при изгибе, как правило, малы по сравнению с пролетом балки. Это позволяет внести некоторые упрощения. Во-первых, при малых прогибах font-weight:normal">font-weight:normal">Во-вторых, горизонтальными перемещениями можно пренебречь, так как они существенно меньше https://pandia.ru/text/79/355/images/image016_5.gif" width="45" height="15 src=">). В связи с этим при расчетах будем пользоваться условной схемой перемещений, изображенной на рис 6.1,б. Согласно этой схеме каждая точка перемещается перпендикулярно продольной оси бруса.

Для определения полной картины деформаций необходимо получить уравнение упругой линии

Исходя из физической природы изогнутой оси бруса, можем утверждать, что упругая линия должна быть непрерывной и гладкой кривой, следовательно, на протяжении всей оси бруса должны быть непрерывны функция и ее первая производная. Прогибы и углы поворота и являются перемещениями сечений балок при изгибе. Деформация того или иного участка балки определяется его кривизной.

При выводе формулы для нормальных напряжений при изгибе нами была получена связь между кривизной и изгибающим моментом:

font-weight:normal">Из курса высшей математики известно следующее уравнение кривизны плоской кривой:

Font-weight:normal">Подставляя значение кривизны в равенство (6.2) и заменяя координату прогибом , получим точное дифференциальное уравнение упругой линии балки:

Font-weight:normal">Интегрирование этого нелинейного дифференциального уравнения связано с большими трудностями. Учитывая, что на практике приходится иметь дело с малыми прогибами и что тангенсы углов наклона касательной к оси будут малы, квадратом первой производной https://pandia.ru/text/79/355/images/image024_4.gif" width="101 height=48" height="48"> (6.5)

Два знака в уравнении (6.5) поставлены потому, что знак кривизны может не совпадать со знаком изгибающего момента. Знак кривизны зависит от направления осей координат. Знак изгибающего момента был выбран в зависимости от того, где расположены растянутые волокна. Так, например, для случая, когда ось направлена вверх, положительному моменту (Рис.6.2,а) соответствует положительная кривизна, а отрицательному – отрицательная кривизна.


Font-size:14.0pt"> Рис 6.2

Таким образом, в случае, когда ось направлена вверх, знаки кривизны и изгибающего момента совпадают. Поэтому в дифференциальном уравнении берется знак “ + ” . Если ось EN-US" style="font-size: 14.0pt">“ - ” .

6.2. Метод непосредственного интегрирования приближенного (основного) дифференциального уравнения упругой линии

Решая задачу аналитическим методом, углы поворота и прогибы вычисляют последовательным интегрированием приближенного дифференциального уравнения (6.5). Проинтегрировав уравнение (6.5) первый раз, получим выражение для угла поворота :

https://pandia.ru/text/79/355/images/image030_3.gif" width="12" height="23">

где font-family:Symbol">- постоянная интегрирования.

Интегрируя второй раз, получим выражение для прогиба :

font-size:14.0pt">.gif" width="17" height="17 src="> - постоянные интегрирования.

Для вычисления интегралов, входящих в (6.6) и (6.7), необходимо сначала написать аналитические выражения для изгибающего момента и жесткости. Постоянные интегрирования находятся из граничных условий , которые зависят от условий перемещения границ участков балки .

Рассмотрим несколько примеров применения метода непосредственного интегрирования приближенного уравнения упругой линии балки.

Пример 6.1. Определить стрелу прогиба и угол поворота сечения В балки, изображенной на рис.6.3.

Font-size:14.0pt"> Рис.6.3

Решение:

; .

- вправо.

.

Знак “ + ”

5. Интегрируем уравнение первый раз. Получаем:

EN-US" style="font-size: 14.0pt">. (а)

EN-US" style="font-size: 14.0pt">. (б)

Так как в заделке прогиб и угол поворота равны нулю, то для определения постоянных интегрирования граничные условия имеют вид:

При https://pandia.ru/text/79/355/images/image042_3.gif" width="37" height="19 src=">font-size:14.0pt">Из уравнения (а) видно, что постоянная представляет собой угол поворота в начале координат (сечении А). Задавая в уравнении (а) , находим . Из уравнения (б) следует, что постоянная font-size:14.0pt; font-family:Symbol">- прогиб в начале координат..gif" width="43" height="19 src=">.

Таким образом, получаем следующие выражения для прогиба и угла поворота:

,

.

Подставляя в первое уравнение , найдем стрелу прогиба:

.

Подставляя во второе уравнение , найдем максимальный угол поворота

Знак “ - ” у прогиба свидетельствует о том, что его направление не совпадает с положительным направлением оси . Знак “ - ” в выражении угла поворота показывает, что сечение В повернулось не против, а по часовой стрелке.

Пример 6.2. Определить стрелу прогиба двухопорной балки и углы поворота опорных сечений А и В (рис.6.4).

Font-size:14.0pt"> Рис.6.4

Решение:

1. Из условий равновесия определяем опорные реакции:

2. Выбираем начало координат на левом конце балки, совмещая его с точкой А. Ось направляем вверх, ось - вправо.

3. Составляем уравнение изгибающего момента в сечении :

.

4. Предполагая, что жесткость балки постоянна, записываем приближенное дифференциальное уравнение упругой линии балки:

.

Знак “ + ” в уравнении упругой лиинии был принят потому, что ось направлена вверх.

5. Интегрируем уравнение первый раз. Получим:

EN-US" style="font-size: 14.0pt">. (в)

Интегрируя еще раз, получаем уравнение для прогиба в сечении :

EN-US" style="font-size: 14.0pt">. (г)

Постоянные интегрирования найдем из граничных условий:

При https://pandia.ru/text/79/355/images/image049_2.gif" width="35" height="19 src=">font-size:14.0pt">Подставляя в уравнение (г) и приравнивая прогиб нулю, получим ; подставляя в это же уравнение https://pandia.ru/text/79/355/images/image031_4.gif" width="16" height="19">:

Найденные значения постоянных интегрирования подставим в уравнения (в) и (г) и получим уравнения углов поворота и прогибов:

;

.

Подставляя https://pandia.ru/text/79/355/images/image049_2.gif" width="35" height="19 src="> в первое уравнение, получим углы поворота соответственно сечений А и В:

; .

В силу симметрии нагрузки максимальный прогиб будет посредине балки. Подставляя во второе уравнение font-size:14.0pt"> .

Как и в предыдущем примере, знак “ - ” у прогиба свидетельствует о том, что его направление не совпадает с положительным направлением оси EN-US style="font-size:14.0pt"">“ - ” в выражении угла поворота показывает, что сечение А повернулось не против, а по часовой стрелке, знак “ + ” в выражении угла поворота font-size:14.0pt">Пример 6.3. В сколько раз прогиб в сечении В на конце изображенной на рис.6.5 балки, больше, чем прогиб в сечении С посредине балки ?

EN-US" style="font-size:14.0pt"> Рис.6.5

Решение:

Воспользуемся результатами, полученными в примере 6.1. Запишем окончательное выражение для прогиба:

и подставим в это уравнение координаты точек С и В. Получим:

При https://pandia.ru/text/79/355/images/image070_2.gif" width="264" height="101 src=">;

Гипотезы при изгибе. Нейтральный слой, радиус кривизны, кривизна, распределение деформаций и нормальных напряжении по высоте поперечного сечения стержня. Касательные напряжения при плоском поперечном изгибе стержней. Расчет балок на прочность при изгибе. Перемещения при изгибе.

Нормальные напряжения при чистом прямом изгибе. Так как нормальные напряжения зависят только от изгибающих моментов, то вывод формулы для вычисления можно производить применительно к чистому изгибу. Отметим, что методами теории упругости можно получить точную зависимость для нормальных напряжений при чистом изгибе, если же решать эту задачу методами сопротивления материалов, необходимо ввести некоторые допущения.

Таких гипотез при изгибе три:

1) гипотеза плоских сечений (гипотеза Бернулли) - сечения плоские до деформации остаются плоскими и после деформации, а лишь поворачиваются относительно некоторой линии, которая называется нейтральной осью сечения балки. При этом волокна балки, лежащие с одной стороны от нейтральной оси будут растягиваться, а с другой - сжиматься; волокна, лежащие на нейтральной оси своей длины не изменяют;

2) гипотеза о постоянстве нормальных напряжений - напряжения, действующие на одинаковом расстоянии у от нейтральной оси, постоянны по ширине бруса;

3) гипотеза об отсутствии боковых давлений - соседние продольные волокна не давят друг на друга.

Рис. 28. Гипотеза Бернулли

Статическая задача о плоском изгибе . Изгибающий момент в сечении представляет собой сумму моментов всех элементарных внутренних нормальных сил σ.dA, возникающих на элементарных площадках поперечного сечения балки (рис. 29), относительно нейтральной оси: .

Данное выражение представляет собой статическую сторону задачи о плоском изгибе. Но его нельзя использовать для определения нормальных напряжений, так как неизвестен закон распределения напряжений по сечению.

Рис. 29. Статическая сторона задачи

Геометрическая сторона задачи о плоском изгибе . Выделим двумя поперечными сечениями элемент балки длиной dz. Под нагрузкой нейтральная ось искривляется (радиус кривизны ρ), а сечения поворачиваются относительно своих нейтральных линий на угол dθ. Длина отрезка волокон нейтрального слоя при этом остается неизменной (рис. 30, б):


Рис. 30. Геометрическая сторона задачи:
а - элемент балки; б - искривление нейтральной оси; в - эпюра σ.dA; г - эпюра ε

Определим длину отрезка волокон, отстоящего от нейтрального слоя на расстоянии y

dz 1 = (ρ + y)dθ .

Относительное удлинение в этом случае будет

Зависимость отражает геометрическую сторону задачи о плоском изгибе, из которой видно, что деформации продольных волокон изменяются по высоте сечения по линейному закону.

Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем.

Линия, по которой поперечное сечение балки пересекается с нейтральным слоем балки, называется нейтральной линией сечения.

Физическая сторона задачи о плоском изгибе. Используя закон Гука при осевом растяжении, получаем

Подставив в выражение, отражающее статическую сторону задачи о плоском изгибе, значение σ, получаем

Подставив значение в исходную формулу, получаем

(13)

Данное выражение отражает физическую сторону задачи о плоском изгибе, которое дает возможность рассчитать нормальные напряжения по высоте сечения.

Хотя это выражение получено для случая чистого изгиба, но как показывают теоретические и экспериментальные исследования, оно может быть использовано и для плоского поперечного изгиба.

Нейтральная линия. Положение нейтральной линии определим из условия равенства нулю нормальной силы в сечениях балки при чистом изгибе

Так как M x ≠ 0 и I x ≠ 0, то необходимо, чтобы нулю был равен интеграл . Данный интеграл представляет собой статический момент сечения относительно нейтральной оси. Так как статический момент сечения равен нулю только относительно центральной оси, следовательно, нейтральная линия при плоском изгибе совпадает с главной центральной осью инерции сечения.

Касательные напряжения . Касательные напряжения, которые возникают в сечениях балки при плоском поперечном изгибе, определяются по зависимости:

(14)

где Q - поперечная сила в рассматриваемом сечении балки; S xo - статический момент площади отсеченной части сечения относительно нейтральной оси балки; b - ширина сечения в рассматриваемом слое; Ix -момент инерции сечения относительно нейтральной оси.

Касательные напряжения равны нулю в крайних волокнах сечения и максимальны в волокнах нейтрального слоя.

Расчет балок на прочность при изгибе. Прочность балки будет обеспечена, если будут выполняться условия:

(15)

Максимальные нормальные напряжения при изгибе возникают в сечениях, где действует максимальный изгибающий момент, в точках сечения наиболее удаленных от нейтральной оси

Максимальные касательные напряжения возникают в сечениях балки, где действует максимальная поперечная сила

Касательные напряжения τmax обычно малы по сравнению с σmax и в расчетах, как правило, не учитываются. Проверка по касательным напряжениям производится только для коротких балок.

Перемещения при изгибе . Под расчетом на жесткость понимают оценку упругой податливости балки под действием приложенных нагрузок и подбор таких размеров поперечного сечения, при которых перемещения не будут превышать установленных нормами пределов.

Условие жесткости при изгибе

Перемещение центра тяжести сечения по направлению перпендикулярному к оси балки, называется прогибом. Прогиб обозначается буквой W.

Наибольший прогиб в пролете или на консоли балки, называется стрелой прогиба и обозначается буквой ƒ.

Угол q , на который каждое сечение поворачивается по отношению к своему первоначальному положению и есть угол поворота.

Угол поворота считается положительным, при повороте сечения против хода часовой стрелки

Угол поворота сечения равен значению производной от прогиба по координате Z в этом же сечении, то есть:

Уравнение упругой линии балки

(16)

Существуют три метода решения дифференциального уравнения упругой линии балки. Это метод непосредственного интегрирования, метод Клебша и метод начальных параметров.

Метод непосредственного интегрирования . Проинтегрировав уравнение упругой линии балки первый раз, получают выражение для определения углов поворота:

Интегрируя второй раз, находят выражения для определения прогибов:

Значения постоянных интегрирования С и D определяют из начальных условий на опорах балки

Метод Клебша . Для составления уравнений необходимовыполнить следующие основные условия:

  • начало координат, для всех участков, необходимо расположить в крайнем левом конце балки;
  • интегрирование дифференциального уравнения упругой линии балки проводить, не раскрывая скобок;
  • при включении в уравнение внешнего сосредоточенного момента М его необходимо помножить на (Z - a), где а - координата сечения, в котором приложен момент;
  • в случае обрыва распределенной нагрузки ее продлевают до конца балки, а для восстановления действительных условий нагружения вводят «компенсирующую» нагрузку обратного направления

Метод начальных параметров

Для углов поворота


(17)

Для прогибов:


(18)

где θ - угол поворота сечения; w - прогиб; θo - угол поворота в начале координат; w0 - прогиб в начале координат; dі - расстояние от начало координат до i-й опоры балки; ai - расстояние от начало координат до точки приложения сосредоточенного момента Mi; bi - расстояние от начало координат до точки приложения сосредоточенной силы Fi; сi - расстояние от начало координат до начала участка распределенной нагрузки qi; Ri и Мрi - реакция и реактивный момент в опорах балки.

Определение стрелы прогибов для простых случаев


Рис. 31. Примеры нагрузок балок

Вычисление перемещений методом Мора

Если не требуется знание уравнения изогнутой линии бруса, а необходимо определить только линейные или угловые перемещения отдельного сечения, удобнее всего воспользоваться методом Мора.Для балок и плоских рам интеграл Мора имеет вид:

где δ - искомое перемещение (линейное или угловое); М p , М i - аналитические выражения изгибающих моментов соответственно от заданной и единичной cилы; EJ x - жесткость сечения балки в плоскости изгиба. При определении перемещений нужно рассматривать два состояния системы: 1 - действительное состояние, с приложенной внешней нагрузкой; 2 - вспомогательное состояние, в котором балка освобождается от внешней нагрузки, а к сечению, перемещение которого определяется, прикладывается единичная сила, если определяется линейное перемещение, или единичный момент, если определяется угловое перемещение (рис. 32).

Рис. 32. Определение перемещений:
а - действительное состояние; б, в - вспомогательные состояния

Формулу Мора можно получить, например. используя принцип возможных перемещений.


Рис. 33. Схема рамы:
а - под воздействием силы; б - внутренние усилия

Рассмотрим схему (рис. 33а), когда в точке А в направлении искомого перемещения ΔA приложена единичная сила , вызывающая в поперечном сечении системы внутренние силовые факторы (рис. 33, б). В соответствии с принципом возможных перемещений работа этих внутренних силовых факторов на любых возможных перемещениях должна равняться работе единичной силы на возможном перемещении δΔA:

Выбираем возможные перемещения пропорциональными действительным:

И после подстановки получим:

При учете, что

приходим к формуле Мора

(19)

которая служит для определения любых обобщённых перемещений в стержневых системах.

В случае, когда брус работает только на изгиб (Mx ≠ 0, Nz = Mz = My = Qx = Qy = 0), выражение (1) принимает вид:

(20)

Правило Верещагина позволяет заменить непосредственное интегрирование в формулах Мора так называемым перемножением эпюр. Способ вычисления интеграла Мора путем замены непосредственного интегрирования перемножением соответствующих эпюр называется способом (или правилом) Верещагина, заключающемся в следующем: чтобы перемножить две эпюры, из которых хотя бы одна является прямолинейной, нужно площадь одной эпюры умножить на ординату другой эпюры, расположенную под центром тяжести первой (ординаты используются только с прямолинейных эпюр). Эпюры сложного очертания могут быть разбиты на ряд простейших: прямоугольник, треугольник, квадратичную параболу и т.п. (рис. 34).


Рис. 34. Простейшие эпюры

Справедливость правила Верещагина .

Рис. 35. Схема перемножения эпюр:
а - произвольная эпюра; б - прямолинейная

Приведены две эпюры изгибающих моментов, из которых одна Мk имеет произвольное очертание, а другая Мi прямолинейна (рис. 35). Сечение стержня считаем постоянным. В этом случае

Величина Mkdz представляет собой элементарную площадь dω эпюры Мk (заштрихована). Получаем

Но Mi = ztg α, поэтому,

Выражение представляет собой статический момент площади эпюры Мk относительно оси у, проходящей через точку О, равный ωkΖc, где ωk - площадь эпюры моментов; Ζс - расстояние от оси у до центра тяжести эпюры М k . Из рисунка очевидно:

Ζ c = М i /tg α,

где Мi - ордината эпюры Mi, расположенная под центром тяжести эпюры Мk (под точкой С).

(21)

Формула (21) представляет правило вычисления интеграла Мора: интеграл равен произведению площади криволинейной эпюры на ординату, взятую с прямолинейной эпюры и расположенную под центром тяжести криволинейной эпюры.

Встречающиеся на практике криволинейные эпюры могут быть разбиты на ряд простейших: прямоугольник, треугольник, симметричную квадратичную параболу и т.п.

При помощи разбивания эпюр на части можно добиться того, что при перемножении все эпюры были бы простой структуры.

Пример вычисления перемещений . Требуется определить прогиб в середине пролета и угол поворота левого опорного сечения балки, нагруженной равномерно распределенной нагрузкой (рис. 36, а), способом Мора-Верещагина.

Рассмотрим 3 состояния балки: грузовое состояние (при действии распределенной нагрузки q;) ему соответствует эпюра Mq (рис. 36, б), и два единичных: при действии силы , приложенной в точке С (эпюра , рис. 36, в), и момента , приложенного в точке В (эпюра , рис. 36, г).

Прогиб балки в середине пролета:

Обратим внимание, что перемножение эпюр выполняется для половины балки, а затем из-за симметрии) полученный результат удваивается. При вычислении угла поворота сечения в точке В площадь эпюры Mq умножается на расположенную под ее центром тяжести ординату эпюры (1/2, рис. 9, г), т.к. эпюра изменяется по прямой линии:

Рис. 36. Пример расчета:
а - заданная схема балки; б - грузовая эпюра моментов;
в - единичная эпюра от единичной силы; г - от единичного момента

Упругая линия балки - ось балки после деформации.

Прогиб балки $y$ - поступательное перемещение центра тяжести в поперечном направлении балки. Прогиб вверх считаем положительным, вниз - ’ емким.

Уравнение упругой линии - математическая запись зависимости $y(x)$ (прогиба по длине балки).

Стрела прогиба $f = {y_{\max }}$ - максимальное по длине значение прогиба балки.

Угол поворота сечения $\varphi $ - угол, на который поворачивается сечение в процессе деформирования балки. Угол поворота считаем положительным, если сечение поворачивается против часовой стрелки, и наоборот.

Угол поворота сечения равен углу наклона упругой линии. Таким образом, функция изменения угла поворота по длине балки равна первой производной от функции прогибов $\varphi (x) = y"(x)$.

Таким образом, при изгибе рассматриваем два вида перемещений - прогиб и угол поворота сечения.

Цель определения перемещений

Перемещение в стержневых системах (в частности в балках) определяются для обеспечения условий жесткости (прогибы ограничиваются строительными нормами).

Кроме этого, определение перемещений необходимо для расчета прочности статически невыдающихся систем.

Дифференциальное уравнение упругой линии (изогнутой оси) балки

На данном этапе необходимо установить зависимость перемещений в балке от внешних нагрузок, способа закрепления, размеров балки и материала. Для полного решения задачи необходимо получить функцию прогибов $y(x)$ по всей длине балки. Вполне очевидно, что перемещения в балке зависят от деформаций каждого сечения. Ранее нами была получена зависимость кривизны сечения балки от изгибающего момента, действующего в этом сечении.

$\frac{1}{\rho } = \frac{M}{{EI}}$.

Кривизна линии определяется ее уравнением $y(x)$ так

$\frac{1}{\rho } = \frac{{y}}{{{{\left({1 + {{\left({y"} \right)}^2}} \right)}^{3/2}}}}$ ,

где $y"$ и $y$ - соответственно, первая и вторая производная от функции прогибов с координатой x .

С практической точки зрения эту запись можно упростить. На самом деле $y" = \varphi $ - угол поворота сечения в реальных конструкциях не может быть большим, как правило не больше 1град = 0,017рад . Тогда $1 + {\left({y"} \right)^2} = 1 + {0.017^2} = 1.000289 \approx 1$, то есть можно считать, что $\frac{1}{\rho } = y" = \frac{{{d^2}y}}{{d{x^2}}}$. Таким образом, мы получили уравнение упругой линии балки (дифференциальное уравнение изогнутой оси балки). Это уравнение впервые получено Эйлером.

$\frac{{{d^2}y}}{{d{x^2}}} = \frac{{M(x)}}{{EI}}.$

Получена дифференциальная зависимость показывает взаимосвязи между перемещениями и внутренними усилиями в балках. Учитывая дифференциальную зависимость между поперечной силой, изгибающим моментом и поперечной нагрузкой, покажем содержание производных от функции прогибов.

$y(x)$ - функция прогибов;

$y"(x) = \varphi (x)$ - функция углов поворота;

$EI \cdot y"(x) = M(x)$ - функция изменения изгибающего момента;

$EI \cdot y""(x) = M"(x) = Q(x)$ - функция изменения поперечной силы;

$EI \cdot {y^{IV}}(x) = M"(x) = q(x)$ - функция изменения поперечной нагрузки.