Походы Транспорт Экономные печи

В чем состоит главная функция биосферы. Характеристика биосферы: основы, функции и структура. Живое и неживое

Грибы - совокупность гетеротрофных организмов, отличающихся от животных тем, что они ведут прикреплённый образ жизни и имеют неограниченный рост. Раньше грибы включались в царство растений. Грибы различают по размерам - от микроскопических(дрожжевых) до гигантских дождевиков с весом плодового тела в 50 кг- и разделяют на несколько функциональных групп:

Сапротрофы- редуценты, разрушающие мёртвое органическое вещество.

Симбиотрофы- входят в симбиоз с корнями высших растений и формируют микоризу, что облегчает поглощение растениями питательных элементов из почвенного раствора.

Кроме растений и животных, В.И.Вернадский включает сюда и человечество, влияние которого на геохимические процессы отличается от воздействия остальных живых существ, во-первых, своей интенсивностью, увеличивающейся с ходом геологического времени; во-вторых, тем воздействием, какое деятельность людей оказывает на остальное живое вещество.

Это воздействие сказывается, прежде всего, в создании многочисленных новых видов культурных растений и домашних животных. Такие виды не существовали раньше и без помощи человека либо погибают, либо превращаются в дикие породы. Поэтому Вернадский рассматривает геохимическую работу живого вещества в неразрывной связи животного, растительного царства и культурного человечества как работу единого целого.

Постепенно идея о тесной взаимосвязи между живой и неживой природой, об обратном воздействии живых организмов и их систем на окружающие их физические, химические и геологические факторы все настойчивее проникала в сознание ученых и находила реализацию в их конкретных исследованиях. Этому способствовали и перемены, произошедшие в общем подходе естествоиспытателей к изучению природы. Они все больше убеждались в том, что обособленное исследование явлений и процессов природы с позиций отдельных научных дисциплин оказывается неадекватным. Поэтому на рубеже ХIХ – ХХ вв. в науку все шире проникают идеи холистического, или целостного, подхода к изучению природы, которые в наше время сформировались в системный метод ее изучения.

Основные циклы веществ в биосфере

Химические элементы циркулируют в биосфере. Циклы веществ характеризуются скоростью, замкнутостью и типом запасного фонда. Газообразные формы составляют подвижный, обменный фонд, а твёрдые и жидкие соединения с его участием- консервативный, резервный фонд, очень медленно вовлекаемый в круговорот.

Важнейшие циклы биосферы:

1. Круговорот воды в биосфере происходит по схеме: выпадение атмосферных осадков, поверхностный и внутрипочвенный сток в водоёмы, испарение, перенос водяного пара, конденсация, повторное выпадение осадков и т.д. Вода испаряется не только поверхностью водоёмов и почв, но и живыми организмами, ткани которых на 70% состоят из воды. Большое количество воды испаряется растениями; они используют воду как элемент питания, как среду, в которой протекают жизненные процессы, и как субстанцию, вместе с которой поступают к ним из почвы питательные вещества.

До развития цивилизации круговорот воды был равновесным. Однако вмешательство человека существенно нарушило этот цикл, особенно в последние десятилетия. В частности, уменьшается испарение воды лесами ввиду сокращения их площади и, напротив, увеличивается испарение с поверхности почвы при орошении сельскохозяйственных угодий. Испарение с поверхности океана уменьшается вследствие появления на воде тончайшей плёнки нефти. Наконец, на круговорот воды воздействует парниковый эффект- потепление климата под влиянием повышения концентрации углекислого газа в атмосфере. При усилении этих тенденций могут произойти значительные изменения круговорота воды. Это уже проявляется в неравномерности распределения осадков по территории планеты. В результате этого, в одних районах происходят небывалые по масштабам наводнения, а в других- жестокие засухи.

2.Круговорот кислорода в биосфере осуществляется за счёт пополнения атмосферных запасов кислорода в результате фотосинтеза растений, его поглощения при дыхании организмов, сжигание топлива в промышленности и на транспорте. В настоящее время поддерживается равновесный круговорот кислорода. Сохранение равновесного круговорота кислорода является одной из глобальных задач охраны природы.

3.Круговорот углерода - один из самых важных циклов в биосфере, так как углерод составляет основу органических соединений. Особенно велика в круговороте роль углекислого газа, который поступает в атмосферу при дыхании организмов, сжигании органического топлива, осушении болот и дегумификации почв. В то же время общее уменьшение площади, занятой растительностью, в результате строительства и в особенности сведения лесов уменьшает потребление углекислого газа растениями. Итогом нарушения круговорота углерода может быть парниковый эффект.

4. Круговорот азота - обмен между инертным азотом атмосферы и соединениями азота в почвах и организмах. Круговорот азота протекает по следующей схеме: перевод инертного азота в доступные для растений формы (образование аммиака при грозовых разрядах, производство азотных удобрений на заводах), усвоение азота растениями, переход части азота растений в ткани животных, разложение отмерших растений и трупов животных микроорганизмами - редуцентами вплоть до восстановления молекулярного азота, который возвращается в атмосферу.

В настоящее время биологическая азотфиксация уменьшилась вследствие разрушения естественных экосистем и сравнялась с промышленной фиксацией азота. Происходит повсеместное уменьшение содержания органических соединений азота в почве (разрушение гумуса), что ведёт к снижению плодородия почв. Увеличение производства азотных удобрений для компенсации уменьшения биологического азота ведёт к загрязнению среды и расходованию большого количества энергии.

Экология ставит задачей восстановление естественного цикла азота за счёт уменьшения производства азотных удобрений и расширения посевов бобовых, которые симбиотически связаны с бактериями- азотфиксаторами.

5.Круговорот фосфора. В отличие от циклов углерода и азота, которые являются закрытыми, этот круговорот – открытый, т.е.часть вещества постоянно теряется. Фосфор содержится в горных породах, откуда выщелачивается в почву и усваивается растениями, а затем по пищевым цепям переходит в тела животных. После разрушения мёртвых животных и растений редуцентами только часть фосфора вовлекается в круговорот и повторно используется растениями. Остальной фосфор вымывается из почвы в водоёмы – реки, озёра, моря, где оседает на дно и либо совсем не возвращается на сушу, либо в небольших количествах возвращается с выловленной человеком рыбой и с экскрементами птиц, питающихся рыбой.

Отток фосфора с суши в океан усиливается при сведении лесов, распашке почв и внесении фосфорных удобрений. Поскольку запасы фосфора на суше ограниченны, а его рециклинг из океана проблематичен, в перспективе земледелие ожидает кризис фосфора, что вызовет снижение урожаев. Кроме того, фосфорные удобрения содержат примесь тяжёлых металлов, и потому при их использовании возможно загрязнение почв.

Функции биосферы (по Вернадскому и основные биосферные законы по Реймерсу)

Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.

Функции (от лат. Functio - исполнение, совершение)

"Живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, ее определяющей".

Приведем пять постулатов В.И.Вернадского, относящихся к функции биосферы.

Постулат первый: "С самого начала биосферы жизнь, в нее входящая, должна была быть уже сложным телом, а не однородным веществом, поскольку связанные с жизнью ее биогеохимические функции по разнообразию и сложности не могут быть уделом какой-нибудь одной формы жизни". Смысл сказанного однозначен: первобытная биосфера изначально была представлена богатым функциональным разнообразием.

Постулат второй: "Организмы проявляются не единично, а в массовом эффекте... ". И далее: "Первое появление жизни... должно было произойти не в виде появления одного какого-нибудь вида организмов, а их совокупности, отвечающей геохимической функции жизни. Должны были сразу появиться биоценозы".

Третий постулат: "В общем монолите жизни, как бы не менялись его составные части, их химические функции не могли быть затронуты морфологическим изменением". Смысл приведенных постулатов таков: первичная биосфера была представлена "совокупностями" организмов типа биоценозов, которые и были главной "действующей силой" геохимических преобразований, а морфологические изменения компонентов этих "совокупностей" не отражались на их "химических функциях".

Постулат четвертый: "Живые организмы... своим дыханием, своим питанием, своим метаболизмом... непрерывной сменой поколений... порождают одно из грандиознейших планетных явлений... миграцию химических элементов в биосфере", поэтому "на всем протяжении протекших миллионов лет мы видим образование тех же минералов, во все времена шли те же циклы химических элементов, какие мы видим и сейчас".

И пятый постулат: "Все без исключения функции живого вещества в биосфере могут быть исполнены простейшими одноклеточными организмами".

Какие же именно "геохимические функции" имел в виду Вернадский? Он определил их такими терминами: газовая, кислородная, окислительная, кальциевая, восстановительная, концентрационная, разрушение органических соединений, восстановительное разложение, метаболизм и дыхание. Функций этих было достаточно, чтобы "былая биосфера" сыграла свою определяющую роль в становлении оболочек Земли - атмосферы, гидросферы, литосферы и геосферы. Современная наука о биосфере те же функции классифицирует по пяти категориям:

энергетическая (накопление свободной энергии - связывание и запасание солнечной энергии);

концентрационная (акапливание химических элементов в телах живых организмов в масштабах биосферы (формирование атмосферы, залежей органических и неорганических веществ);

транспортная (закон биоигенной миграции атомов, биогеохимические круговороты);

деструктивная (разложение органики и замыкание круговоротов, выветривание √ разрушение земной коры, формирование почвы);

средообразующая

Естественно возникает вопрос, какой же механизм функционировал и продолжает обеспечивать способность биосферы выполнять? Деятельность живого вещества, живых организмов.

Функции биосферы системный подход.

Функция биологических систем - свойство направлять свою деятельность к достижению определенных полезных для них результатов приспособительного значения.

ФУНКЦИЯ БИОСФЕРЫ - выражается как специфика направления развития жизни на Земле.

Если направление превращений вещества и энергии в НЕЖИВОЙ природе характеризуется общим снижением уровня организации и качества энергии, приближением к устойчивому равновесию, возрастанием термодинамической и структурной энтропии, то в ЖИВОЙ природе направление этих превращений оказывается прямо противоположным. ЭТИМ И ОПРЕДЕЛИЛАСЬ ВЕДУЩАЯ РОЛЬ БИОСФЕРЫ НА ЗЕМЛЕ.

Общее направление превращений биосферы в целом или ее ФУНКЦИЮ можно определить как повышение уровня структурной организации, накопление свободной энергии устойчивого неравновесия, появление и возрастание НЕГЭНТРОПИИ, которые достигаются за счет энергетических и материальных ресурсов неживой природы и реализуются в синтезе первичной биомассы и эволюции ее форм. При этом разные подсистемы биосферы играют разную роль.

1.Общее направление превращений в РАСТИТЕЛЬНОЙ ПОДСИСТЕМЕ биосферы или ее функцию можно определить как первичный синтез биомассы из неорганических источников, создание исходного негэнтропийного материала.

В буквальном переводе термин “биосфера” обозначает сферу жизни и в таком смысле он впервые был введен в науку в 1875 г. австрийским геологом и палеонтологом Эдуардом Зюссом (1831 - 1914). Однако задолго до этого под другими названиями, в частности "пространство жизни", "картина природы", "живая оболочка Земли" и т.п., его содержание рассматривалось многими другими естествоиспытателями.

Первоначально под всеми этими терминами подразумевалась только совокупность живых организмов, обитающих на нашей планете, хотя иногда и указывалась их связь с географическими, геологическими и космическими процессами, но при этом скорее обращалось внимание на зависимость живой природы от сил и веществ неорганической природы. Даже автор самого термина "биосфера" Э. Зюсс в своей книге "Лик Земли", опубликованной спустя почти тридцать лет после введения термина (1909 г.), не замечал обратного воздействия биосферы и определял ее как "совокупность организмов, ограниченную в пространстве и во времени и обитающую на поверхности Земли".

Первым из биологов, который ясно указал на огромную роль живых организмов в образовании земной коры, был Ж.Б.Ламарк (1744 - 1829). Он подчеркивал, что все вещества, находящиеся на поверхности земного шара и образующие его кору, сформировались благодаря деятельности живых организмов.

Факты и положения о биосфере накапливались постепенно в связи с развитием ботаники, почвоведения, географии растений и других преимущественно биологических наук, а также геологических дисциплин. Те элементы знания, которые стали необходимыми для понимания биосферы в целом, оказались связанными с возникновением экологии, науки, которая изучает взаимоотношения организмов и окружающей среды. Биосфера является определенной природной системой, а ее существование в первую очередь выражается в круговороте энергии и веществ при участии живых организмов.

Очень важным для понимания биосферы было установление немецким физиологом Пфефером (1845 - 1920) трех способов питания живых организмов:

  • - автотрофное - построение организма за счет использования веществ неорганической природы;
  • - гетеротрофное - строение организма за счет использования низкомолекулярных органических соединений;
  • - микотрофное - смешанный тип построения организма (автотрофно-гетеротрофный).

Биосфера (в современном понимании) - своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.

Биосфера охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы.

Атмосфера. Атмосфера имеет несколько слоев:

  • - тропосфера - нижний слой, примыкающий к поверхности Земли (высота 9-17 км). В нем сосредоточено около 80% газового состава атмосферы и весь водяной пар;
  • - стратосфера;
  • - ионосфера - там “живое вещество” отсутствует.

Преобладающие элементы химического состава атмосферы: N2 (78%), O2 (21%), CO2 (0,03%).

Состояние атмосферы оказывает большое влияние на физические, химические и биологические процессы на поверхности Земли и в водной среде. Для биологических процессов наибольшее значение имеют: кислород, используемый для дыхания и минерализации мертвого органического вещества, диоксид углерода, участвующий в фотосинтезе, и озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Азот, диоксид углерода, пары воды образовались в значительной мере благодаря вулканической деятельности, а кислород - в результате фотосинтеза.

Гидросфера. Вода - важный компонент биосферы и один из необходимых факторов существования живых организмов. Основная ее часть (95%) находится в Мировом океане, который занимает около 70 % поверхности Земного шара и содержит 1 300 млн. км.

Преобладающие элементы химического состава гидросферы: Na+, Mg2+, Ca2+, Cl-, S, C. Концентрация того или иного элемента в воде еще ничего не говорит о том, насколько он важен для растительных и животных организмов, обитающих в ней. В этом отношении ведущая роль принадлежит N, P, Si, которые усваиваются живыми организмами. Главной особенностью океанической воды является то, что основные ионы характеризуются постоянным соотношением во всем объеме мирового океана.

Большое значение имеют газы, растворенные в воде: кислород и диоксид углерода. Их содержание широко варьируется в зависимости от температуры и присутствия живых организмов. В воде содержится в 60 раз больше диоксида углерода, чем в атмосфере.

Гидросфера формировалась в связи с развитием литосферы, которая в течение геологической истории Земли выделяла большое количество водяного пара.

Литосфера. Основная масса организмов, обитающих в пределах литосферы, находится в почвенном слое, глубина которого не превышает нескольких метров. Почва включает минеральные вещества, образующиеся при разрушении горных пород, и органические вещества - продукты жизнедеятельности организмов.

Литосфера - внешняя твердая оболочка Земли, состоящая из осадочных и магматических пород. В настоящее время земной корой принято считать верхний слой твердого тела планеты, расположенный выше сейсмической границы Мохоровичича. Поверхностный слой литосферы, в котором осуществляется взаимодействие живой материи с минеральной (неорганической), представляет собой почву. Остатки организмов после разложения переходят в гумус (плодородную часть почвы). Составными частями почвы служат минералы, органические вещества, живые организмы, вода, газы.

Преобладающие элементы химического состава литосферы: O, Si, Al, Fe, Ca, Mg, Na, K.

Ведущую роль выполняет кислород, на долю которого приходится половина массы земной коры и 92% ее объема, однако кислород прочно связан с другими элементами в главных породообразующих минералах. Т.е. в количественном отношении земная кора - это “царство” кислорода, химически связанного в ходе геологического развития земной коры.

Живые организмы (живое вещество). Хотя границы биосферы довольно узки, живые организмы в их пределах распределены очень неравномерно. На большой высоте и глубинах гидросферы и литосферы организмы встречаются относительно редко. Жизнь сосредоточена главным образом на поверхности земли, в почве и приповерхностном слое океана.

В распределении живых организмов по видовому составу наблюдается важная закономерность. Из общего числа видов 21 % приходится на растения, но их вклад в общую биомассу составляет 99 %. Среди животных 96 % видов беспозвоночные и только 4% позвоночные, из которых только десятая часть - млекопитающие.

Таким образом, в количественном отношении преобладают формы, состоящие на относительно низком уровне эволюционного развития.

Масса живого вещества составляет всего 0,01-0,02% от косного вещества биосферы, одна она играет ведущую роль в геохимических процессах. Вещества и энергию, необходимую для обмена веществ, организмы черпают из окружающей среды. Огромные количества живой материи воссоздаются, преобразуются и разлагаются.

Ежегодно благодаря жизнедеятельности растений и животных воспроизводится около 10 % биомассы.

Кроме растений и животных, В.И.Вернадский включает сюда и человечество, влияние которого на геохимические процессы отличается от воздействия остальных живых существ, во-первых, своей интенсивностью, увеличивающейся с ходом геологического времени; во-вторых, тем воздействием, какое деятельность людей оказывает на остальное живое вещество.

Это воздействие сказывается, прежде всего, в создании многочисленных новых видов культурных растений и домашних животных. Такие виды не существовали раньше и без помощи человека либо погибают, либо превращаются в дикие породы. Поэтому Вернадский рассматривает геохимическую работу живого вещества в неразрывной связи животного, растительного царства и культурного человечества как работу единого целого.

Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.

Главная функция биосферы безусловно заключается в обеспечении круговоротов химических элементов. Все функции биосферы так или иначе предопределены деятельностью живого вещества в биосфере, которые в определенной степени условно можно свести к нескольким основополагающим функциям. В.И. Вернадским отмечал, что все без исключения геохимические фун­кции живого вещества в биосфере могут выполняться простейшими одноклеточными организмами. Однако одна форма жизни не может выполнять все геохимические функции. Именно поэтому, в ходе геологическо­го времени, происходила смена разных организмов, которые замещали друг друга в исполнении функции без изменения самой функции. Ученым было выделено девять биогеохимических функций биосферы:

Газовая (все газы атмосферы создаются и изменяются био­генным путем);

Кислородная (образование свободного кислорода);

Окислительная (окисление бедных кислородом соединений);

Кальциевая (выделение кальция в виде чистых солей);

Восстановительная (создание сульфидов металлов и серово­дорода);

Концентрационная (скопление элементов рассеянных в ок­ружающей среде);

Функция разрушения органических соединений (разложение с выделением воды, углекислого газа и азота);

Функция восстановительного разложения (образование серо­водорода, метана, водорода и т. п.);

Функция метаболизма и дыхания (поглощение кислорода и воды, выделение углекислого газа с миграцией органических элемен­тов).

Современная классификация несколько видоизменена - некоторые биогеохимические функции объединены, а часть переименована. Наиболее современной является классификация, предложенная А.В. Лапо, в которой выделены следующие функции: газовая; энергетическая; окислительно-восстановительная; концентрационная; деструктивная; транспортная; средообразующая; рассеивающая.

Газовая функция. Под газовой функцией понимается способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. В частности, включение углерода в процессы фотосинтеза, а затем в цепи питания обусловливало аккумуляцию его в биогенном веществе (органические остатки, известняки и т.п.) В результате этого шло постепенное уменьшение содержания углерода и его соединений, прежде всего двуокиси (СО 2) в атмосфере с десятков процентов до современных 0,03%. Это же относится к накоплению в атмосфере кислорода, синтезу озона и другим процессам.

С газовой функцией в настоящее время связывают два переломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). С этого времени восстановительные процессы в биосфере стали дополняться окислительными. Это произошло примерно 1,2 млрд. лет назад. Второй переломный период в содержании кислорода связывают со временем, когда концентрация его достигла примерно 10 % от современной (вторая точка Пастера). Это создало условия для синтеза озона и образования озонового экрана в верхних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого функцию защиты организмов от губительных ультрафиолетовых лучей выполняла вода, под слоем которой возможна была жизнь).



В ходе эволюции регуляция газового состава осуществлялась как в результате жизнедеятельности организмов и при разложении их остатков, так и при процессах метаморфизации и вулканизма. Выделяемый диоксид углерода живыми организмами и образующийся в ходе различных превращений в неживой природе (например, сжигание топлива) в ходе фотосинтеза СО 2 связывается наземными и водными растениями, с образованием кислорода. Так, например, зеленая масса насаждений на площади 1 га способна производить до 70 т кислорода за вегетационный период. Вернадский считал, что большинство газов, выделяемых при метаморфизме горных пород и извержении вулканов, по своему происхождению биогенны, т.к. являются преобразованными продуктами жизнедеятельности организмов.

Энергетическая функция . Эта функция определяется свойствами светочувствительного вещества - хлорофилла зеленых растений, благодаря которому растения способны улавливать, ассимилировать, трансформировать и аккумулировать солнечную энергию, преобразуя ее в энергию химических связей молекул органических веществ. Органические вещества, созданные зелеными растениями, служат источником энергии для представителей иных царств живых существ.

С энергетической точки зрения образова­ние живого вещества - это процесс поглощения солнечной энергии, которая в потенциальной форме аккумулируется в свободном кисло­роде и органических соединениях. Фотосинтез является первичным источником всей биомассы планеты, в том числе органических ископаемых. Наземная и водная растительность планеты способна аккумулировать в течение 1 года 31021 Ккал. энергии Солнца (примерно в 100 раз больше, чем вырабатывается во всем мире). Минерализация органических со­единений как внутри живых организмов, так и во внешней среде со­провождается освобождением энергии, поглощенной при фотосинтезе. Энергия освобождается не только в тепловой, но и химической форме, носителями которой служат природные воды: обогащаясь СО 2 , Н 2 S и другими продуктами минерализации, воды становятся химически вы­сокоактивными, преобразуя компоненты неживой природы. Бла­годаря автотрофам солнечная энергия не просто отражается от по­верхности Земли, а глубоко проникает вглубь земной коры.

Окислительно-восстановительная функция . Функция связана с интенсификацией под влиянием живого вещества таких процессов как окисление (благодаря обогащению среды кислородом), так и восстановление элементовс переменной валентностью, таких как азот, сера, железо, марганец и др., и прежде всего в тех случаях, когда идет разложение органических веществ при дефиците кислорода. Восстановительные процессы обычно сопровождаются образованием и накоплением сероводорода, а также метана. Это, в частности, делает практически безжизненными глубинные слои болот, а также значительные придонные толщи воды (например, в Черном море).

Микроорганизмы-восстановители гетеротрофны и используют в качестве источника энергии готовые органические вещества. К ним относятся, например,

Денитрифицирующие бактерии, восстанавливающие из окисленных форм азот до элементарного состояния;

- сульфатредуцирующие бактерии, восстанавливающие из окисленных форм серу до сероводорода (H 2 S).

Микроорганизмы-окислителимогут быть какавтотрофами,так игетеротрофами. Это бактерии, окисляющие сероводород и серу, и нитрофицирующие микроорганизмы, железные и марганцевые бактерии, концентрирующие эти металлы в своих клетках.

Геологические результаты деятельности этих организмов проявляются в образовании осадочных месторождений серы, образовании залежей сульфидов металлов, возникновение железных и железомарганцевых руд.

Концентрационная функция . Концентрационная функция есть накопление определенных веществ в живых существах. Раковины моллюсков, панцири диатомовых водорослей, скелеты животных - все это примеры проявления концентрационной функции живого вещества.

Данная функция связана с избирательным поглоще­нием веществ из внешней среды. Это может быть концентрация в ион­ной форме из истинных растворов (так строят скелет морские беспо­звоночные) или из коллоидных растворов фильтрующими организма­ми. Организмы массами извлекают из ненасыщенных растворов угле­кислые соли кальция, магния и стронция, кремнезем, фосфаты, йод, фтор и др. Водоросли концентрируют элементы, содержащиеся в среде в концентрациях не менее 10 мг/л, более энергично действуют бакте­рии. Животные потребляют их из живого вещества автотрофов, кон­центрация многих элементов в них выше, чем в автотрофах. Некото­рые элементы сильно концентрируются в продуктах выделения жи­вотных (например, содержание урана в гуано побережья Перу в 10 тыс. раз выше, чем в морской воде). Некоторые элементы концентрируются очень немногими организмами, но в значительных количествах, например редкий элемент ванадий входит в состав крови примитивных хордовых - асцидий, их культивируют в Японии. В Новой Зеландии нашли кустарник, в золе листьев которого содержится до 1% никеля.

Для оценки степени концентрации элементов живыми организ­мами применяют коэффициент биологического поглощения. Если раз­делить содержание элементов в золе наземных растений на их процент в почве, то полученные коэффициенты составят для кальция, натрия, калия магния, стронция, цинка, бора, селена единицы и десятки, а для фосфора, серы, хлора, йода и брома десятки и сотни.

У морских орга­низмов отношение содержания металлов на сухой вес к их содержа­нию в морской воде измеряется десятками и сотнями тысяч (для тита­на железа, марганца, никеля и кобальта), а иногда и превышают мил­лион (хром). В целом говорят о биофильности элементов биосферы: отношения их среднего содержания в живом веществе к содержанию данного элемента в литосфере. Наибольшей биофильностью характе­ризуется углерод, менее биофильны азот и водород.

Концентрация химических элементов живым веществом может проявляться в виде морфологически оформленных минеральных обра­зований и в виде органоминеральных соединений. Минеральные обра­зования являются продуктами секреции специальных желез, мине­ральный скелет живых организмов может быть карбонатный, фосфат­ный, сульфатный, образованный гидратами, гидроокисями и силика­тами. Скелет животных может быть внутренним и наружным. Мине­ральная составляющая высших растений представлена фитолитами - продуктами выделения в виде кристаллов или округлых включений, состоящих из кремнезема или щавелевокислого кальция. Некоторые многоклеточные водоросли предпочитают подпорки из карбоната кальция. У некоторых животных скелет может быть построен из двух минералов, а иногда в их теле представлен и какой-нибудь третий ми­нерал. Например, у некоторых моллюсков раковины сложены из ара­гонита и кальцита, а жевательный аппарат инкрустирован кристаллами гетита - гидрата окиси железа.

Наибольшее количество минералов образуют многоклеточные животные: моллюски (20 минералов) и позвоночные (17). Большинст­во минеральных образований плохо растворимо в морской воде и по­сле отмирания организмов накапливается в осадках. Органоминераль­ные образования быстро разлагаются и вновь включаются в биологи­ческий круговорот.

Рассеивающая функция – функция живого вещества противоположная по результатам концентрационной функции. Она проявляется через трофическую (питательную) и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, гибели организмов при разного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рассеивается, например, кровососущими насекомыми и т. п.

Деструктивная функция . Основной механизм этой функции связан с круговоротом веществ. Минерализация органических веществ, разложение отмершей органики до простых неорганических соединений определяет деструктивную функцию живого вещества. За счет жизнедеятельности огромного числа гетеротрофов, в основном грибов, животных и микроорганизмов, происходит гигантская в масштабах всей Земли, работа по разложению органических остатков. С учетом потребности в кислороде выделяют 2 основных типа процессов разложения: аэробное дыхание и анаэробное дыхание.

Аэробное дыхание – это процесс обратный "нормальному фотосинтезу". В этом процессе синтезированное органическое вещество {СН 2 O} n вновь разлагается с образованием СО 2 и H 2 О и с высвобождением энергии. Все высшие растения и животные и большинство микроорганизмов получают энергию для поддержания жизнедеятельности и построения клеток именно с помощью этого процесса.

Анаэробное (бескислородное) дыхание служит основой жизнедеятельности главным образом у сапрофагов (бактерии, дрожжи, плесневые грибы, простейшие), хотя, как звено метаболизма, оно может встречаться и в некоторых тканях высших животных. Хороший пример облигатных анаэробов - метановые бактерии, которые разлагают органические соединения, образуя метан путем восстановления, либо органического углерода, либо углерода карбонатов. К общеизвестным организмам, использующим брожение, относятся дрожжи, в изобилии встречаются в почве, где играют ключевую роль в разложении растительных остатков.

Многие группы бактерий (например, факультативные анаэробы) способны и к аэробному и к анаэробному дыханию. Однако конечные продукты этих двух процессов различны, и количество высвобождающейся энергии при анаэробном дыхании значительно меньше. Итак, при деструкции органической массы протекают два параллельных процесса разложение органических соединений:

В конечном счете до углекислого газа, аммиака и воды в аэробных условиях, а

В анаэробных условиях еще и до водорода и углеводородов, что представляет собой процесс минерализации. Продукты минерализации вновь используются автотрофами.

Процесс разложения органических веществ, характерен для всех частей биосферы, где есть живые организмы. Часть органического вещества, попадая в условия, неблагоприятные для деятельности деструкторов, захоранивается и консервируется в составе осадочных пород, именно эта некоторая несбалансированность процессов синтеза и разложения органических веществ в биосфере определила кислородный режим современной воздушной оболочки Земли.

Однако процесс разложения имеет место не только для органического вещества, разлагается также и неорганическое вещество. Например, "сверлящие"’ цианобактерии и некоторые водоросли селятся на карбонатных породах, возвращая в биологический круговорот каль­ций, магний, фосфор. Коралловые рифы разгрызаются некоторыми рыбами и морскими ежами, которые поглощают карбонаты кальция, а извергают известковый ил. Алюмосиликаты разлагаются при химиче­ском воздействии: цианобактерии, бактерии, грибы, лишайники воз­действуют на горные породы растворами угольной, азотной, серной кислот (с концентрацией до 10%). Корни елей на бедных почвах также выделяют сильные кислоты. Химически разлагаются в биосфере као­лин, апатит и многие другие минералы. Разлагая минералы, организмы избирательно поглощают из них макро- и микроэлементы. Так, слоновая трава в африканских сава­нах извлекает с 1 га за год 250 кг кремния и 80 кг щелочных и щелоч­ноземельных элементов, а растительность джунглей - даже 8 т крем­ния.

Транспортная функция . Транспортная функция связана с переносом вещества и энергии в результате активной формы движения организмов. Часто такой перенос осуществляется на колоссальные расстояния, например, при миграциях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, например, в местах их скопления (птичьи базары и другие колониальные поселения). Пищевые взаимодействия живого вещества приводят к перемещению огромных масс химических элементов и веществ как против сил тяжести, так и в горизонтальном направлении, в то время как не­живое вещество в биосфере перемещается только под действием силы тяже­сти, исключительно сверху вниз. Живое вещество – единственный (помимо поверхностного натяжения) фактор, обусловливающий обратное перемещение вещества – снизу вверх (например, растения перемещают растворы из подземных органов в надземные), против уклона местности, из океана – на континент, реализующий, восходящую ветвь биохимических циклов. В горизонтальном перемещении веществ главную роль играют птицы, крылатые насекомые, а также стаи морских рыб, поднимающихся на нерест вверх по рекам. Перенос вещества при этом сопоставим с дей­ствием смерчей и ураганов.

В обобщающем виде роль живого вещества сформулирована законом биогенной миграции атомов (А.И. Перельман предложил назвать «законом Вернадского»): «Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция) или же она протекает в среде, геохимические особенности которой преимущественно обусловлены живым веществом как тем, которое в настоящее время населяет данную систему, так и тем, которое действовало на Земле в течение всей геологической истории» .

Средообразующая функция . Эта функция является в значительной мере результатом совместного действия других функций (интегративной). В конечном счете именно с ней связано преобразование живым веществом физико-химических параметров среды.

Эту функцию можно рассматривать как глобально - вся природная среда создана живыми организмами, они же и поддерживают в относительно стабильном состоянии ее параметры практически во всех геосферах, так и в более узком смысле. В более узком плане средообразующая функция живого вещества проявляется, например, в образовании почв или в том, что леса регулируют поверхностный сток, увеличивая при этом влажность воздуха и обогащая атмосферу кислородом. В. И. Вернадский, как отмечалось выше, почву называл биокосным телом, подчеркивая тем самым большую роль живых организмов в ее создании и существовании.

Локальная средообразующая деятельность живых организмов и особенно их сообществ проявляется также в трансформации ими метеорологических параметров среды. Известно, что в лесных сообществах микроклимат существенно отличается от открытых (полевых) пространств. Например, здесь меньше суточные и годовые колебания температур.

Наиболее очевидное проявление средообразующей функции- механическое воздействие, или второй род геологической деятельности живого. Многоклеточные животные, строя свои норы в грунте, сильно изменяют его свойства (при рыхле­нии червями объем воздуха увеличивается в 2,5 раза). Изменяют меха­нические свойства почвы и корни высших растений, скрепляют, пре­дохраняют от эрозии. Например лес способен удерживать почву на склоне 20-40°. Подобно дейст­вуют нитчатые цианобактерии, создающие подобие сети, которая за­щищает почву от эрозии (например в горных почвах Таджикистана содержится иногда более 100 м нитчатых цианобактерий в 1 г почвы - это уже не почва, а войлок).

К основным параметрам, характеризующим физико-химическое состояние среды, относится водородный показатель и окислительно-восстановительный потенциал. Биогенное вещество, образующееся после отмирания живого, попадая на дно водоемов, в болотные почвы, разлагается, и в условиях недостатка кислорода формируется резко восстановительная среда.

Основные газы атмосферы образуются биогенно: кислород и азот, кроме того, доказано, что 50% водорода возникает в результате деятельности живых организмов. Окись углерода также биогенна, в водах океана ее содержание в сотни раз превышает концентрацию, равновесную с атмосферой.

Через биогенное вещество меняется состав природных вод. Продукты разложения степных трав образуют растворы нейтральной и слабобощелочной реакции, полыни и опад саксаула - щелочной, а масса отмершей хвои, вереска, лишайников и сфагнума - кислой.

В донных осадках физико-химическая обстановка опре­деляется наличием органического вещества: восстановительная созда­ется при разложении органики сульфатвосстанавливающими бакте­риями с образованием сероводорода (при наличии сульфатов). Если не удаляется сероводород идет самоотравление системы (сероводородная зона Черного моря).

Наибольшее средообразующее влияние оказывают микроорга­низмы, они изменяют среду в соответствии с потребностями. В силь­нокислой среде выделяют нейтральные продукты, в щелочной - ки­слоты. По мнению некоторых ученых, эволюция микроорганизмов шла по пути развития способности изменять среду.

Недавно установлено, что живое вещество изменяет не только химические, но и физические параметры среды, ее термические, элек­трические и механические характеристики. Например, в Черном и Белом морях обнаружен "биоэлектрический эффект": фитопланктон создает электрическое поле с отрицательным зарядом, а скопление отмершего планктона - с положительным зарядом.

Наука получает все новые данные о средообразующей роли жи­вого, при этом растения воздействуют на газовый состав атмосферы и ионный состав океанической воды, а животные почти не влияют на атмосферу, но изменяют катионный состав морской воды.

Все мы являемся частью живой оболочки - биосферы. Это уникальная экосистема не только нашей планеты, но и галактики в целом. Конечно, последние исследования подтвердили, что органика была обнаружена и на Марсе, и на различных астероидах, но такое разнообразие жизненных форм присуще только Земле. Если вы готовы немного расширить свой кругозор и выйти за рамки школьной программы, самое время подробнее поговорить о характеристике биосферы, ее структуре и основных функциях.

Понятие биосферы и ее сущность

Биосфера - это условная оболочка Земли, которую заселяют живые организмы. Почему условная? Дело в том, что другие оболочки планеты (земная, водная и воздушная) обрамляют планету непрерывным слоем. Сначала идет земная и (литосфера), затем гидросфера (она объединяет все водные объекты), после - атмосфера (воздушная оболочка, плавно переходящая в космическое пространство). Биосферу сложно представить в виде конкретного слоя, ведь живые организмы равномерно распределены по всей поверхности Земли и могут обитать во всех трех стихиях.

Сущностные характеристики биосферы уходят в самую древность, но все же это самая "молодая" оболочка нашей планеты. Жизнь на Земле зародилась относительно недавно, всего 3,8 миллиардов лет назад, что, по сравнению с возрастом планеты, сущий пустяк. Существует два понятия биосферы:

  • Первое определяет оболочку как совокупность всей органики на планете. Именно оно послужило основой термина, который используется по сей день.
  • Второе понятие было предложено В. И. Вернадским, он считал, что биосфера - это неразрывное единство и взаимодействие живой и неживой природы, в широком смысле этих определений.

Тем не менее, основные характеристики биосферы обусловлены именно ее органической составляющей. Ведь это ее принципиальное отличие от других оболочек Земли.

Учение о биосфере и происхождение термина

Концепция живой оболочки была предложена в 19 веке. Жан Батист Ламарк дал краткую характеристику биосфере, в то время как официального названия еще даже не существовало. В 1875 году австрийский палеонтолог и геолог Эдуард Зюсс впервые предложил термин "биосфера", который используется по сей день.

Огромный вклад в изучение всего живого на Земле внес советский философ и биогеохимик В. И. Вернадский, он прославился благодаря созданию целостного учения о биосфере. В его трудах живые организмы выступают как мощнейшая сила, которая непрерывно участвует в преобразовании планеты Земля.

Границы обитания живых организмов

Общая характеристика биосферы начинается с описания границ, в пределах которых могут обитать живые организмы. Некоторые из них довольно живучие, и могут выдержать даже самые критические условия.

Границы биосферы:

  • Верхняя граница. Определяется атмосферой, а конкретно озоновым это примерно 15-20 километров. Чем ближе к экватору, тем мощнее защитный экран планеты. Выше озонового слоя жизнь попросту невозможна, ведь ультрафиолетовое излучение несовместимо с жизнедеятельностью клеток организмов. К тому же, с высотой существенно сокращается количество кислорода, а это также губительно для живых существ.
  • Нижняя граница. Определяется литосферой, максимально возможная глубина не превышает 3,5 - 7,5 километров. Все зависит от критического повышения температуры, при которой происходит денатурация белковых структур. Однако большая часть живых организмов сосредоточена на глубине всего нескольких метров, это - корневая система растений, грибки, микроорганизмы, насекомые и животные, обитающие в норах.
  • Границы в гидросфере. Живые организмы могут существовать в абсолютно любых частях океана: от поверхности воды (планктон, водоросли) до дна глубоководных желобов. К примеру, ученые доказали, что жизнь существует даже в Марианской впадине на глубине 11 километров.

Структура живой оболочки

К основным характеристикам биосферы можно отнести ее структуру. Вернадский выделял несколько типов веществ, которые слагают живую оболочку. Причем они могли иметь как органическое, так и неорганическое происхождение:

  1. Живое вещество. Сюда можно отнести все, что имеет клеточную структуру. Однако масса живого вещества в невелика и составляет буквально одну миллионную часть всей оболочки. биосферы сводится к тому, что это самая важная часть нашей планеты. Ведь именно живые организмы постоянно воздействуют на облик Земли, меняя структуру ее поверхности.
  2. Биогенное вещество. Это структуры, которые создаются и перерабатываются живыми организмами. Удивительно, но на протяжении миллионов лет, живые существа пропустили через системы своих органов практически весь мировой океан, огромный объем атмосферных газов и большую массу минеральных веществ. В результате этих процессов образуются полезные ископаемые органического происхождения, такие как нефть, карбонатные породы и уголь.
  3. Косное вещество. Это продукты неживой природы, которые образовались без непосредственного участия живых организмов. Сюда можно отнести горные породы, минералы и неорганическую часть почвы.
  4. Биокосное вещество. Мы помним о том, что живые организмы постоянно воздействуют планету. В результате этого образуются вещества, которые являются продуктами распада и разрушения косных структур. К этой группе можно отнести почву, кору выветривания и осадочные породы органического происхождения.
  5. Также в структуру биосферы можно включить вещества, которые находятся в состоянии радиоактивного распада.
  6. Отдельную группу составляют атомы, которые непрерывно создаются в процессе ионизации под влиянием космического излучения.
  7. С недавних пор в структуру биосферы были включены вещества, имеющие внеземное (космическое) происхождение.

Живое вещество в составе других оболочек Земли

Если подробно останавливаться на характеристике и составе биосферы, то нельзя не рассмотреть особенности жизнедеятельности живых организмов в других оболочках планеты:

  • Аэросфера. Живые организмы не могут находиться в атмосферных слоях во взвешенном состоянии, субстратом для жизни аэробионтов служат микроскопические водяные капли, а солнечная активность и аэрозоли выступают в роли источника неиссякаемой энергии. Организмы, обитающие в атмосфере, делятся на три группы. Тропобионты - ведут активную жизнедеятельность в пространстве от верхушек деревьев до кучевых облаков. Альтобионты - организмы, которые способны выжить в условиях Парабионты - случайно попадают в самые высокие слои атмосферы. На такой высоте они теряют способность к размножению, а их жизненный цикл существенно сокращается.

  • Геобиосфера. Субстратом и средой обитания для геобионтов служит земная кора. Эта оболочка также включает в себя несколько уровней, на которых обитают специфические формы жизни. Террабионты - организмы которые обитают непосредственно на поверхности суши. В свою очередь, террабиосфера делится еще на несколько оболочек: фитосфера (зона от макушек деревьев до поверхности земли) и ипедосфера (почвенный слой и кора выветривания). Эоловая зона - высокогорные области, к которых невозможна жизнь даже высших растений. Типичными представителями этой зоны являются эолобионты. Литобиосфера - глубинные слои земной коры. Эта зона делится на гипотеррабиосферу (место, где могут обитать аэробные (нуждающиеся в кислороде) формы жизни) и теллуробиосфера (здесь возможно выживание лишь анаэробных (не нуждающихся в кислороде) организмов). Кроме того, в литобиосфере можно встретить литобионтов, которые обитают в подземных водах и порах горных пород.

  • Гидробиосфера. Эта область охватывает все водные объекты (кроме подземных вод и влаги атмосферы) нашей планеты, включая ледники. Жители морей и океанов именуются гидробионтами, которые в свою очередь делятся на: Аквабионты - обитатели континентальных вод. Маринобионты - живые организмы морей и океанов. В толще воды выделяется три уровня жизни, в зависимости от количества солнечных лучей, которые проникают внутрь: Фотосфера - самая освещенная зона. Дисфотосфера - всегда сумеречная область океана (не более 1% инсоляции). Афотосфера - зона абсолютной темноты.

От тундры до тропических лесов. Классификация биомов планеты

Характеристика биосферы неразрывно связана с понятием биом. Под этим термином понимаются крупные которые имеют некий преобладающий тип растительности или специфические особенности ландшафта. Всего их девять. Ниже представлена краткая характеристика основных биомов биосферы:

  • Тундра. Обширное безлесное пространство, которое занимает северные части Евразии и Северной Америки. Растительность этой зоны не богата, в основном это лишайники, сезонные травы и мхи. Животный мир более разнообразен, особенно в теплые месяцы года, когда начинается сезон миграции многих видов птиц и и животных.
  • Тайга. Основной вид растительности этой области - хвойные леса. Биом занимает около 11 % территории всей суши. Несмотря на суровые погодные условия, в тайге чрезвычайно разнообразный растительный и животный мир.

  • Листопадные леса. Располагаются в умеренной зоне. Сезонность климата и достаточное количество влаги позволили развиться определенному типу растительности этого биома. В основном это широколиственные породы деревьев. Кроме того, эти леса являются домом для множества млекопитающих, птиц и грибов, не говоря о насекомых и микроорганизмах.
  • Степи. представлен азиатскими степями и классическими прериями Северной Америки. Чаще всего это безлесные открытые пространства, так как сказывается существенный дефицит влаги. Но животный мир все так же разнообразен.
  • Средиземноморская зона. Территория вокруг одноименного моря отличается жарким и довольно засушливым летом и весьма комфортной прохладной зимой. Типичная растительность представлена жестколистными лесами, колючими кустарниками и травами.
  • Пустыни. К сожалению, более 30 % суши занимают области совсем не благоприятные для обитания живых организмов. Пустынные зоны встречаются по всей Африке и Австралии, в Южной Америке, а также на Юге, Юго-Западе и в Центре Евразии. Растительность и животный мир этих регионов довольно скудные.
  • Саванны. Этот биом представляет собой открытые пространства, которые полностью покрыты травой и единичными деревьями. Несмотря на то, что это довольно бедные почвы, животный мир этой зоны поражает своим разнообразием. Саванны характерны для Африки, Южной Америки и Австралии.
  • Колючее (тропическое) редколесье. Эту зону отличают причудливые формы колючих кустарников и многовековые деревья - баобабы. Из-за неравномерного распределения осадков, растительность этого биома довольно редкая. Тропическое редколесье можно встретить на Юго-Западе Азии и в Африке.

  • Тропические леса. Это самая влажная зона нашей Планеты. Растительность этого биома поражает своей масштабностью и разнообразием. Широколиственные дождевые леса располагаются в бассейнах крупных полноводных рек, таких как Амазонка, Ориноко, Нигер, Замбези, Конго. А также покрывают территории полуостровов и архипелагов Юго-Восточной Азии.

Основные функции живой оболочки в природе

Самое время рассмотреть основные функции биосферы и их характеристику:

  • Энергетическая. Эту функцию осуществляют растения, которые участвуют в процессе фотосинтеза. Аккумулируя солнечную энергию, они либо распределяют ее между другими компонентами живой оболочки, либо накапливают в отмерших органических частицах. Так появляются горючие полезные ископаемые (уголь, торф, нефть).
  • Газовая. Живые организмы участвуют в непрекращающемся газовом обмене.
  • Концентрационная. Некоторые формы жизни имеют способность выборочно накапливать биогенные элементы из внешней среды. В последующем они могут служить источником этих веществ.
  • Деструктивная. Живые организмы постоянно воздействуют на окружающую среду, разлагая и перерабатывая ее поверхность. Именно так формируется косное и биокосное вещество.
  • Средообразующая. Биосфера сохраняет баланс благоприятных и неблагоприятных условий среды, которые необходимы для полноценной жизнедеятельности организмов.

Свойства биосферы

Так как живая оболочка представляет собой очень сложную систему, то характеристика биосферы не может обойтись без основных свойств, которые определяют ее специфику:

  1. Централизованность. Все процессы в живой оболочке сосредоточены вокруг живых организмов, они занимают центральное место в учении о биосфере.
  2. Открытость. Биосфера может существовать только за счет поступления энергии извне, в данном случае это солнечная активность.
  3. Саморегулируемость. Биосфера представляет собой "целостный организм", который, подобно живому существу, обладает способностью к гомеостазу.
  4. Разнообразие. На земле обитает огромное количество животных, растений, микроорганизмов и грибов.
  5. Обеспечение круговорота веществ. Именно за счет живых организмов осуществляется фотосинтез и круговорот веществ. В характеристике биосферы эти два процесса занимают одно из главных мест.

Эволюция и история развития живой оболочки Земли

Если дать характеристику биосферы с точки зрения эволюции, то можно сказать о том, что это единственная оболочка, которая непрерывно развивается и совершенствуется. Все дело в живом веществе, именно оно постоянно эволюционирует. Неорганическая часть живой оболочки не имеет способности к развитию. Если говорить о характеристике биосферы в будущем, то здесь все немного сложнее. Оболочка становится все более нестабильной, и очень сложно предугадать дальнейшее развитие событий.

Искусственная биосфера

Человек не может существовать вне живой оболочки, очень трудно воспроизвести все то, что она способна нам дать. Характеристики биосферы настолько уникальны, что человечество до сих пор не может в полной мере воссоздать ее условия в искусственной среде. Однако наука не стоит на месте и, возможно, в будущем ученые добьются определенных успехов в этом направлении.

Введение

Биосфера (в современном понимании) - своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами. Биосфера охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. Понятие «живое вещество» обозначает совокупность живых организмов биосферы. Область распространения включает нижнюю часть воздушной оболочки (атмосферы), всю водную оболочку (гидросферу), и верхнюю часть твёрдой оболочки (литосферы). Это понятие было введено В.И. Вернадским. Он отметил, что между косной, безжизненной частью биосферы, косными природными телами и живыми организмами, её населяющими идёт непрерывный обмен энергией. Живое вещество играет наиболее важную роль по сравнению с другими веществами биосферы, и выполняет рад важнейших функций.

Энергетическая функция

Энергетическая функция выполняется, прежде всего, растениями, которые в процессе фотосинтеза аккумулируют солнечную энергию в виде разнообразных органических соединений. Чтобы биосфера могла существовать и развиваться, ей необходима энергия. Собственных источников энергии она не имеет и может потреблять энергию только от внешних источников. Главным источником для биосферы является Солнце. По сравнению с Солнцем, энергетический вклад других поставщиков (внутреннее тепло Земли, энергия приливов, излучение космоса) в функционирование биосферы ничтожно мал (около 0,5% от всей энергии, поступающей в биосферу). Солнечный свет для биосферы является рассеянной лучистой энергией электромагнитной природы. Почти 99% этой энергии, поступившей в биосферу, поглощается атмосферой, гидросферой и литосферой, а также участвует в вызванных ею физических и химических процессах (движение воздуха и воды, выветривание и др.) Только около 1% накапливается на первичном звене ее поглощения и передается потребителям уже в концентрированном виде. По словам Вернадского, зеленые хлорофилльные организмы, зеленые растения, являются главным механизмом биосферы, который улавливает солнечный луч и создает фотосинтезом химические тела - своеобразные солнечные консервы, энергия которых в дальнейшем становится источником действенной химической энергии биосферы, а в значительной мере - всей земной коры. Без этого процесса накопления и передачи энергии живым веществом невозможно было бы развитие жизни на Земле и образование современной биосферы.

Каждый последующий этап развития жизни сопровождался все более интенсивным поглощением биосферой солнечной энергии. Одновременно нарастала энергоемкость жизнедеятельности организмов в изменяющейся природной среде, и всегда накопление и передачу энергии осуществляло живое вещество. Современная биосфера образовалась в результате длительной эволюции под влиянием совокупности космических, геофизических и геохимических факторов. Первоначальным источником всех процессов, протекавших на Земле, было Солнце, но главную роль в становлении и последующем развитии биосферы сыграл фотосинтез. Биологическая основа генезиса биосферы связана с появлением организмов, способных использовать внешний источник энергии, в данном случае энергию Солнца, для образования из простейших соединений органических веществ, необходимых для жизни.

Под фотосинтезом понимается превращение зелеными растениями и фотосинтезирующими микроорганизмами при участии энергии света и поглощающих свет пигментов (хлорофилл и др.) простейших соединений (воды, углекислого газа и минеральных элементов) в сложные органические вещества, необходимые для жизнедеятельности всех организмов. Процесс протекает следующим образом. Фотон солнечного света взаимодействует с молекулой хлорофилла, содержащегося в хлоропласте зеленого листа, в результате чего высвобождается электрон одного из ее атомов. Этот электрон, перемещаясь внутри хлоропласта, реагирует с молекулой АДФ, которая, получив достаточную дополнительную энергию, превращается в молекулу АТФ - вещества, являющегося энергоносителем. Возбужденная молекула АТФ в живой клетке, содержащей воду и диоксид углерода, способствует образованию молекул сахара и кислорода, а сама при этом утрачивает часть энергии и превращается вновь в молекулу АДФ.

В результате фотосинтеза растительность земного шара ежегодно усваивает около двухсот миллиардов тонн углекислого газа и выделяет в атмосферу примерно сто сорок пять миллиардов тонн свободного кислорода, при этом образуется более ста миллиардов тонн органического вещества. Если бы не жизнедеятельность растений, исключительно активные молекулы кислорода вступили бы в различные химические реакции, и свободный кислород исчез бы из атмосферы примерно за десять тысяч лет. К сожалению, варварское сокращение человеком массивов зеленого покрова планеты являет реальную угрозу уничтожения современной биосферы. В процессе фотосинтеза одновременно с накоплением органического вещества и продуцированием кислорода растения поглощают часть солнечной энергии и удерживают ее в биосфере. На фотосинтез используется около 1% солнечной энергии, падающей на Землю. Возможно, этот низкий показатель связан с малой концентрацией углекислого газа в атмосфере и гидросфере. Ежегодно фотосинтезирующие организмы суши и океана связывают около 3*1018 кДж солнечной энергии, что примерно в десять раз больше той энергии, которая используется человечеством.

В отличие от зеленых растений некоторые группы бактерий синтезируют органическое вещество за счет не солнечной энергии, а энергии, выделяющейся в процессе реакций окисления серных и азотных соединений. Этот процесс именуется хемосинтезом. В накоплении органического вещества в биосфере он, по сравнению с фотосинтезом, играет ничтожно малую роль. Внутри экосистемы энергия в виде пищи распределяется между животными. Синтезированные зелеными растениями и хемобактериями органические вещества (сахара, белки и др.), последовательно переходя от одних организмов к другим в процессе их питания, переносят заключенную в них энергию. Растения поедают растительноядные животные, которые в свою очередь становятся жертвами хищников и т. д. Этот последовательный и упорядоченный поток энергии является следствием энергетической функции живого вещества в биосфере.