Походы Транспорт Экономные печи

Общее выражение для силы лоренца. Лоренца сила. Так как размерность силы

Наряду с силой Ампера, кулоновского взаимодействия, электромагнитными полями в физике часто встречается понятие сила Лоренца. Это явление является одним из основополагающих в электротехнике и электронике, на ряду с , и прочими. Она воздействует на заряды, которые двигаются в магнитном поле. В этой статье мы кратко и понятно рассмотрим, что такое сила Лоренца и где она применяется.

Определение

Когда электроны движутся по проводнику – вокруг него возникает магнитное поле. В то же время, если поместить проводник в поперечное магнитное поле и двигать его – возникнет ЭДС электромагнитной индукции. Если через проводник, который находится в магнитном поле, протекает ток – на него действует сила Ампера.

Её величина зависит от протекающего тока, длины проводника, величины вектора магнитной индукции и синуса угла между линиями магнитного поля и проводником. Она вычисляются по формуле:

Рассматриваемая сила отчасти похожа на ту, что рассмотрена выше, но действует не на проводник, а на движущуюся заряженную частицу в магнитном поле. Формула имеет вид:

Важно! Сила Лоренца (Fл) действует на электрон, движущийся в магнитном поле, а на проводник – Ампера.

Из двух формул видно, что и в первом и во втором случае, чем ближе синус угла aльфа к 90 градусам, тем большее воздействие оказывает на проводник или заряд Fа или Fл соответственно.

Итак, сила Лоренца характеризует не изменение величины скорости, а то, какое происходит воздействие со стороны магнитного поля на заряженный электрон или положительный ион. При воздействии на них Fл не совершает работы. Соответственно изменяется именно направление скорости движения заряженной частицы, а не её величина.

Что касается единицы измерения силы Лоренца, как и в случае с другими силами в физике используется такая величина как Ньютон. Её составляющие:

Как направлена сила Лоренца

Чтобы определить направление силы Лоренца, как и с силой Ампера, работает правило левой руки. Это значит, чтобы понять, куда направлено значение Fл нужно раскрыть ладонь левой руки так, чтобы в руку входили линии магнитной индукции, а вытянутые четыре пальца указывали направление вектора скорости. Тогда большой палец, отогнутый под прямым углом к ладони, указывает направление силы Лоренца. На картинке ниже вы видите, как определить направление.

Внимание! Направление Лоренцового действия перпендикулярно движению частицы и линиям магнитной индукции.

При этом, если быть точнее, для положительно и отрицательно заряженных частиц имеет значение направление четырёх развернутых пальцев. Выше описанное правило левой руки сформулировано для положительной частицы. Если она заряжена отрицательно, то линии магнитной индукции должны быть направлены не в раскрытую ладонь, а в её тыльную сторону, а направление вектора Fл будет противоположным.

Теперь мы расскажем простыми словами, что даёт нам это явление и какое реальное воздействие она оказывает на заряды. Допустим, что электрон движется в плоскости, перпендикулярной направлению линий магнитной индукции. Мы уже упомянули, что Fл не воздействует на скорость, а лишь меняет направление движения частиц. Тогда сила Лоренца будет оказывать центростремительное воздействие. Это отражено на рисунке ниже.

Применение

Из всех сфер, где используется сила Лоренца, одной из масштабнейших является движение частиц в магнитном поле земли. Если рассмотреть нашу планету как большой магнит, то частицы, которые находятся около северного магнитного полюсов, совершают ускоренное движение по спирали. В результате этого происходит их столкновение с атомами из верхних слоев атмосферы, и мы видим северное сияние.

Тем не менее, есть и другие случаи, где применяется это явление. Например:

  • Электронно-лучевые трубки. В их электромагнитных отклоняющих системах. ЭЛТ применялись больше чем 50 лет подряд в различных устройствах, начиная от простейшего осциллографа до телевизоров разных форм и размеров. Любопытно, что в вопросах цветопередачи и работы с графикой некоторые до сих пор используют ЭЛТ мониторы.
  • Электрические машины – генераторы и двигатели. Хотя здесь скорее действует сила Ампера. Но эти величины можно рассматривать как смежные. Однако это сложные устройства при работе которых наблюдается воздействие многих физических явлений.
  • В ускорителях заряженных частиц для того, чтобы задавать им орбиты и направления.

Заключение

Подведем итоги и обозначим четыре основных тезиса этой статьи простым языком:

  1. Сила Лоренца действует на заряженные частицы, которые движутся в магнитном поле. Это вытекает из основной формулы.
  2. Она прямо пропорциональна скорости заряженной частицы и магнитной индукции.
  3. Не влияет на скорость частицы.
  4. Влияет на направление частицы.

Её роль достаточно велика в «электрических» сферах. Специалист не должен упускать из вида основные теоретические сведения об основополагающих физических законах. Эти знания пригодятся, как и тем, кто занимается научной работой, проектированием и просто для общего развития.

Теперь вы знаете, что такое сила Лоренца, чему она равна и как действует на заряженные частицы. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Электромагнитные волны. Понятие электромагнитной волны. Свойства электромагнитных волн. Волновые явления
  • Вы сейчас здесь: Магнитное поле. Вектор магнитной индукции. Правило буравчика. Закон Ампера и сила Ампера. Сила Лоренца. Правило левой руки. Электромагнитная индукция, магнитный поток, правило Ленца, закон электромагнитной индукции, самоиндукция, энергия магнитного поля
  • Квантовая физика. Гипотеза Планка. Явление фотоэффекта. Уравнение Эйнштейна. Фотоны. Квантовые постулаты Бора.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • «Физика - 11 класс»

    Магнитное поле действует с силой на движущиеся заряженные частицы, в то числе и на проводники с током.
    Какова же сила, действующая на одну частицу?


    1.
    Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика X. Лоренца, создавшего электронную теорию строения вещества.
    Силу Лоренца можно найти с помощью закона Ампера.

    Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной Δl, к числу N заряженных частиц, упорядоченно движущихся в этом участке проводника:

    Так как сила (сила Ампера), действующая на участок проводника со стороны магнитного поля
    равна F = | I | BΔl sin α ,
    а сила тока в проводнике равна I = qnvS
    где
    q - заряд частиц
    n - концентрация частиц (т.е. число зарядов в единице объема)
    v - скорость движения частиц
    S - поперечное сечение проводника.

    Тогда получаем:
    На каждый движущийся заряд со стороны магнитного поля действует сила Лоренца , равная:

    где α - угол между вектором скорости и вектором магнитной индукции.

    Сила Лоренца перпендикулярна векторам и .


    2.
    Направление силы Лоренца

    Направление силы Лоренца определяется с помощью того же правила левой руки , что и направление силы Ампера:

    Если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец укажет направление действующей на заряд силы Лоренца F л


    3.
    Если в пространстве, где движется заряженная частица, существует одновременно и электрическое поле, и магнитное поле, то суммарная сила, действующая на заряд, равна: = эл + л где сила, с которой электрическое поле действует на заряд q, равна F эл = q.


    4.
    Cила Лоренца не совершает работы , т.к. она перпендикулярна вектору скорости частицы.
    Значит сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости.
    Под действием силы Лоренца меняется лишь направление скорости частицы.

    5.
    Движение заряженной частицы в однородном магнитном поле

    Есть однородное магнитное поле , направленное перпендикулярно к начальной скорости частицы .

    Сила Лоренца зависит от модулей векторов скорости частицы и индукции магнитного поля.
    Магнитное поле не меняет модуль скорости движущейся частицы, значит остается неизменным и модуль силы Лоренца.
    Сила Лоренца перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы.
    Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что

    В однородном магнитном поле заряженная частица равномерно движется по окружности радиусом r .

    Согласно второму закону Ньютона

    Тогда радиус окружности по которой движется частица, равен:

    Время, за которое частица делает полный оборот (период обращения), равно:

    6.
    Использование действия магнитного поля на движущийся заряд.

    Действие магнитного поля на движущийся заряд используют в телевизионных трубках-кинескопах, в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками.

    Сила Лоренца используется в циклотроне - ускорителе заряженных частиц для получения частиц с большими энергиями.

    На действии магнитного поля основано также и устройство масс-спектрографов, позволяющих точно определять массы частиц..

    Почему одних ученых история вносит на свои страницы золотыми буквами, а некоторых стирает бесследно? Каждый пришедший в науку обязан оставить в ней свой след. Именно по величине и глубине этого следа судит история. Так, Ампер и Лоренц внесли неоценимый вклад в развитие физики, что дало возможность не только развивать научные теории, но получило весомую практическую ценность. Как появился телеграф? Что такое электромагниты? На все эти вопросы даст ответ сегодняшний урок.

    Для науки представляют огромную ценность полученные знания, которые впоследствии могут найти свое практическое применение. Новые открытия не только расширяют исследовательские горизонты, но и ставят новые вопросы, проблемы.

    Выделим основные открытия Ампера в области электромагнетизма.

    Во-первых, это взаимодействия проводников с током. Два параллельных проводника с токами притягиваются друг к другу, если токи в них сонаправлены, и отталкиваются, если токи в них противонаправлены (рис. 1).

    Рис. 1. Проводники с током

    Закон Ампера гласит:

    Сила взаимодействия двух параллельных проводников пропорциональна произведению величин токов в проводниках, пропорциональна длине этих проводников и обратно пропорциональна расстоянию между ними.

    Сила взаимодействия двух параллельных проводников,

    Величины токов в проводниках,

    − длина проводников,

    Расстояние между проводниками,

    Магнитная постоянная.

    Открытие этого закона позволило ввести в единицы измерения величину силы тока, которой до того времени не существовало. Так, если исходить из определения силы тока как отношения количества заряда перенесенного через поперечное сечение проводника в единицу времени, то мы получим принципиально не измеряемую величину, а именно количество заряда, переносимое через поперечное сечение проводника. На основании этого определения мы не сможем ввести единицу измерения силы тока. Закон Ампера позволяет установить связь между величинами сил тока в проводниках и величинами, которые можно измерить опытным путем: механической силой и расстоянием. Таким образом, получена возможность ввести в рассмотрение единицу силы тока - 1 А (1 ампер).

    Ток в один ампер - это такой ток, при котором два однородных параллельных проводника, расположенных в вакууме на расстоянии один метрот друга взаимодействуют с силой Ньютона.

    Закон взаимодействия токов - два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой, прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

    Еще одно открытие Ампера – это закон действия магнитного поля на проводник с током. Он выражается прежде всего в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля. Угол поворота витка прямо пропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током, на некоторую постоянную при неизменных условиях величину.

    – сила тока,

    – момент сил, разворачивающих виток с током.

    Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре (рис. 2).

    Рис. 2. Амперметр

    После открытия действия магнитного поля на проводник с током Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так, магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 3), созданный в 1834 г. русским электротехником Б.С. Якоби.

    Рис. 3. Двигатель

    Рассмотрим упрощенную модель двигателя, которая состоит из неподвижной части с закрепленными на ней магнитами – статора. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов (рис. 4). Если подключить двигатель к источнику постоянного тока в цепь с вольтметром, то при замыкании цепи рамка с током начнет вращение.

    Рис. 4. Принцип работы электродвигателя

    В 1269 г. французский естествоиспытатель Пьер де Марикур написал труд под названием «Письмо о магните». Основной целью Пьера де Марикура было создание вечного двигателя, в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки, неизвестно, но достоверно то, что Якоби использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось ее разогнать до скорости 4,5 км/ч.

    Необходимо упомянуть еще об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведет себя подобно постоянному магниту. Это значит, что можно сконструировать электромагнит – устройство, мощность которого можно регулировать (рис. 5).

    Рис. 5. Электромагнит

    Именно Амперу пришла идея о том, что, скомбинировав проводники и магнитные стрелки, можно создать устройство, которое предает информацию на расстояние.

    Рис. 6. Электрический телеграф

    Идея телеграфа (рис. 6) возникла в первые же месяцы после открытия электромагнетизма.

    Однако широкое распространение электромагнитный телеграф приобрел после того, как Самюэль Морзе создал более удобный аппарат и, главное, разработал двоичную азбуку, состоящую из точек и тире, которая так и называется: азбука Морзе.

    С передающего телеграфного аппарата с помощью «ключа Морзе», который замыкает электрическую цепь, в линии связи формируются короткие или длинные электрические сигналы, соответствующие точкам или тире азбуки Морзе. На приемном телеграфном аппарате (пишущий прибор) на время прохождения сигнала (электрического тока) электромагнит притягивает якорь, с которым жестко связано пишущее металлическое колесико или писец, которые оставляют чернильный след на бумажной ленте (рис. 7).

    Рис. 7. Схема работы телеграфа

    Математик Гаусс, когда познакомился с исследованиями Ампера, предложил создать оригинальную пушку (рис. 8), работающую на принципе действия магнитного поля на железный шарик – снаряд.

    Рис. 8. Пушка Гаусса

    Необходимо обратить внимание на то, в какую историческую эпоху были сделаны эти открытия. В первой половине XIX века Европа семимильными шагами шла по пути промышленной революции – это было благодатное время для научно-исследовательских открытий и быстрого внедрения их в практику. Ампер, несомненно, внес весомый вклад в этот процесс, дав цивилизации электромагниты, электродвигатели и телеграф, которые до сих пор находят широкое применение.

    Выделим основные открытия Лоренца.

    Лоренц установил, что магнитное поле действует на движущуюся в нем частицу, заставляя ее двигаться по дуге окружности:

    Cила Лоренца - центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику, как отношение заряда к массе - удельный заряд .

    Значение удельного заряда - величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь то электрон, протон или любая другая частица. Таким образом, ученые получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы - ядра атома гелия - и бета-частицы - электроны.

    В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. Магнитное поле искривляет траектории частиц (рис. 9). Направление изгиба следа позволяет судить о знаке заряда частицы; измерив радиус траектории, можно определить скорость частицы, если известны ее масса и заряд.

    Рис. 9. Искривление траектории частиц в магнитном поле

    На этом принципе разработан Большой адронный коллайдер (рис. 10). Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.

    Рис. 10. Большой адронный коллайдер

    Для того чтобы охарактеризовать влияние ученого на технический прогресс, вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, ее скорости и заряда. Таким образом, получаем возможность классифицировать заряженные частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами - частицы будут покидать поле в разных точках, и остается только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряженных частиц. Именно по такой схеме работает масс-анализатор (рис. 11). Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.

    Рис. 11. Масс-анализатор

    Это еще не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью ученых и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.

    Список литературы

    1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416с.: ил., 8 л. цв. вкл.
    2. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
    3. Тихомирова С.А., Яворский Б.М., Физика 11. - М.: Мнемозина.
    1. Интернет-портал «Чип и Дип» ().
    2. Интернет-портал «Киевская городская библиотека» ().
    3. Интернет-портал «Институт дистанционного образования» ().

    Домашнее задание

    1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416с.: ил., 8 л. цв. вкл., ст. 88, в. 1-5.

    2. В камере Вильсона, которая размещена в однородном магнитном поле с индукцией 1,5 Тл, альфа-частица, влетая перпендикулярно к линиям индукции, оставляет след в виде дуги окружности радиусом 2,7 см. Определите импульс и кинетическую энергию частицы. Масса альфа-частицы 6,7∙10 -27 кг, а заряд 3,2∙10 -19 Кл.

    3. Масс-спектрограф. Пучок ионов, разогнанных разницей потенциалов 4 кВ, влетает в однородное магнитное поле с магнитной индукцией 80 мТл перпендикулярно линиям магнитной индукции. Пучок состоит из ионов двух типов с молекулярными массами 0,02 кг/моль и 0,022 кг/моль. Все ионы обладают зарядом 1,6 ∙ 10 -19 Кл. Ионы вылетают из поля двумя пучками (рис. 5). Найти расстояние между пучками ионов, которые вылетают.

    4. * С помощью электродвигателя постоянного тока поднимают груз на тросе. Если отключить электродвигатель от источника напряжения и замкнуть ротор накоротко, груз будет опускаться с постоянной скоростью. Объясните это явление. В какую форму переходит потенциальная энергия груза?

    но ток причем , тогда

    Т.к. nS dl число зарядов в объёме S dl , тогда для одного заряда

    или

    , (2.5.2)

    Сила Лоренца сила, действующая со стороны магнитного поля на движущийся со скоростью положительный заряд (здесь – скорость упорядоченного движения носителей положительного заряда ). Модуль лоренцевой силы:

    , (2.5.3)

    где α – угол между и .

    Из (2.5.4) видно, что на заряд, движущийся вдоль линии , не действует сила ().

    Лоренц Хендрик Антон (1853–1928) – нидерландский физик-теоретик, создатель классической электронной теории, член Нидерландской АН. Вывел формулу, связывающую диэлектрическую проницаемость с плотностью диэлектрика, дал выражение для силы, действующей на движущийся заряд в электромагнитном поле (сила Лоренца), объяснил зависимость электропроводности вещества от теплопроводности, развил теорию дисперсии света. Разработал электродинамику движущихся тел. В 1904 г. вывел формулы, связывающие между собой координаты и время одного и того же события в двух различных инерциальных системах отсчета (преобразования Лоренца).

    Направлена сила Лоренца перпендикулярно к плоскости, в которой лежат векторы и . К движущемуся положительному заряду применимо правило левой руки или «правило буравчика » (рис. 2.6).

    Направление действия силы для отрицательного заряда – противоположно, следовательно, к электронам применимо правило правой руки .

    Так как сила Лоренца направлена перпендикулярно движущемуся заряду, т.е. перпендикулярно , работа этой силы всегда равна нулю . Следовательно, действуя на заряженную частицу, сила Лоренца не может изменить кинетическую энергию частицы.

    Часто лоренцевой силой называют сумму электрических и магнитных сил :

    , (2.5.4)

    здесь электрическая сила ускоряет частицу, изменяет ее энергию.

    Повседневно действие магнитной силы на движущийся заряд мы наблюдаем на телевизионном экране (рис. 2.7).

    Движение пучка электронов по плоскости экрана стимулируется магнитным полем отклоняющей катушки. Если поднести постоянный магнит к плоскости экрана, то легко заметить его воздействие на электронный пучок по возникающим в изображении искажениям.

    Действие лоренцевой силы в ускорителях заряженных частиц подробно описано в п. 4.3.