Походы Транспорт Экономные печи

Экономичный индикатор разряда батареи на светодиоде. Простой высокоточный индикатор разряда акб. Видео работы индикатора разряда аккумулятора

Думаю эта тема будет актуальна тем, у кого в пользовании более двух автомобилей. Как правило, один эксплуатируется зимой, другой — летом. То есть один из них сезон в году стоит в гараже или на стоянке. А пока он стоит там, мы не знаем, как себя чувствует его аккумулятор. Нет, конечно можно "щупать" его периодически вольтметром или купить готовый индикатор, коих много на том же Али-экспресс (например вставляющийся в прикуриватель). Но мне захотелось сделать свой индикатор, который бы показывал промежуточные значения остаточного заряда АКБ. Ну, например, — более 75%, 75%, 50% и 25% заряда. Причем хотелось бы так лениво радеть за здоровьем АКБ, чтобы лишний раз не лезть под капот авто и не распаковывать без надобности зарядное устройство.

Долго искал приемлемые схемы в инете. Собрал некоторые. Но все не то. То гистерезис срабатывания индикации такой, что лучше бы ее и не было, этой индикации, проще и надежнее тестером померить. То установки плавают и нет стабильности, то вообще яркость светодиода плавно изменяется в зависимости от напряжения на АКБ и поди узнай, что там на ней есть. И вот нашел одну схему на каком-то португальском сайте. Проста до неприличия и вроде должна работать. Построена она на операционном усилителе UA741. Вот она:

В ней я поменял только номинал стабилитрона с 6,2 в на 7,5 в. Срабатывания четкие. Светодиод загорается на нужной установке (регулируется подстроечным резистором R2). R2 лучше применять многооборотный, так как выставить им нужное напряжение не просто. Чувствительность в зоне срабатывания очень нежная и почти незримый поворот винта регулировки уносит нужное напряжение в сторону.

Настраивать необходимо, используя точный регулируемый лабораторный источник питания с цифровым вольтметром, показывающим десятые (а лучше сотые, я параллельно включал цифровой тестер) доли вольт. Поскольку я возжелал видеть степень зарядки АКБ в градациях указанных выше, я собрал схему из трех таких блоков. Вот рисунок печатки:

При полной зарядке батареи напряжение на ней выше 12,7 в, при этом ни один светодиод не горит и все прекрасно (фото 1).

Первый блок зажигает зеленый светодиод при напряжении на клеммах АКБ менее 12,5 в, что соответствует около 75% заряда АКБ (фото 2).

Второй зажигает желтый светодиод при напряжении ниже 12,2 в, что есть около 50% заряда (Фото 3).

Ну а третий, красный, загорается при напряжении ниже 11,7 в или около 25% остаточного заряда АКБ (Фото 4).

Значения установок напряжения я использовал для AGM батарей (у меня на автомобилях такие стоят). Для обычных кислотных их можно изменить на другие. Плату поместил в небольшой (40 мм х 70 мм) корпус. На корпусе разместил дополнительно малогабаритный выключатель в разрыве плюсового провода для удобства, чтобы не скидывать зажимы с клемм АКБ, когда не требуются замеры и чтобы устройство не потребляло при этом хотя и небольшой (около 20 мА, в основном определяется током горящих светодиодов) ток от батареи. К аккумулятору от устройства подключается двойной красно-черный провод с зажимами на концах (Фото 5).

Устройство подключено к клеммам аккумулятора стоящего в гараже автомобиля постоянно. Когда нужно, зайдя в гараж, без лишних "плясок" включаю выключатель на устройстве, наблюдаю, каким цветом горят "лампочки" и вижу здоров ли мой АКБ или его надо "подлечить".

Решил сегодня выложить еще одну статью. Опять таки не претендую на "открытие", поскольку все велосипеды изобретены уже давно! Просто однажды мы собирались на полёты, индикаторов разряда батерей в наличии не было вообще никаких, поэтому пришлось срочно придумывать и срочно делать девайсы, чтобы не загубить аккумуляторы. Да, устройства простенькие, в нех нет пищалки. Но супер яркие светодиоды хорошо видны даже в солнечный день и поэтому за сохранность аккумуляторов мы были спокойны. Я согласен, что девайсы получились простейшие, на уровне 80х годов. Тем не менее
с поставленой задачей они успешно справляются! Глядишь, кому то пригодятся!

Индикатор разряда Li Po аккумуляторов.

Известно, что Li Po аккумуляторам противопоказан разряд ниже 3,2 Вольт на банку. Разряд ниже этой величины приводит к скорому выходу аккумулятора из строя. Поэтому контроль напряжения предельного разряда каждой банки аккумулятора крайне желателен. Отсечка
двигателя регулятором скорости не может гарантировать своевременное отключение
аккумулятора. Поэтому имеет смысл применить дополнительную защиту, в качестве которой может использоваться светодиодный индикатор разряда аккумулятора.

В данной схеме в качестве компаратора применен прецизионный регулируемый стабилитрон TL431. Порог выставляется делителем напряжения в цепи УЭ (управляющего электрода) 15 ком (нижний по схеме резистор) и 4,3 ком (верхний резистор).
При этом соотношении резисторов срабатывание стабилитрона TL431 происходит при напря
жении банки 3,2 Вольт. Когда напряжение на аккумуляторе находится в пределах 3,2….4,2 В,
стабилитрон TL431 открыт, падения напряжения на нем недостаточно для работы светодиода и он погашен. Когда напряжение аккумулятора достигает 3,2 В, стабилитрон закрывается, а светодиод загорается от тока, протекающего через резистор 2 ком.

Индикатор состоит из трех одинаковых ячеек, что позволяет побаночно контролировать 1S, 2S и 3S аккумуляторы. При добавлении еще одной - двух ячеек, можно контролировать 4S и 5S
аккумуляторы. Светодиоды я использовал синие суперяркие, они, как мне кажется, наиболее
заметны днем. От звуковой сигнализации я отказался, поскольку звук слышно сравнительно недалеко, а увеличивать габариты и вес не хотел. Вполне достаточно светодиодов, тем более,
что после посадки модель все равно берешь в руки и незаметить включение светодиода просто
невозможно!

Штырьковые контакты я взял от негодной платы электроники винчестера с IDE интерфейсом.
Вставляются они, конечно, в балансирный разъем аккумулятора. Балансирные разъемы я
вывожу наружу из корпуса модели для зарядки аккумулятора без его извлечения из модели.
Закрепляю платку Индикатора на корпусе модели скотчем. Потом можно легко переставить
на другую модель.

Настройка. Настройку делаем каждой ячейки по очереди! Для настройки нужно три обычные батарейки по 1,5 Вольта, соединенные последовательно, переменный резистор 470 Ом и цифровой мультиметр. Переменный резистор 470 Ом включаем реостатом последовательно с плюсовым проводом батарейки. Таким образом получим источник напряжения 4,5 В.
Берем 2х контактный подходящий по шагу разъем и припаиваем к нему только два провода
от батарейки “ - ” и “ + ” . Как говорилось выше, “ + ” проходит через переменный резистор. Переменный резистор ставим в положение, соответствующее минимальному сопротивлению и подключаем разъем к соответствующим контактам нижней (или верхней) ячейки. Поскольку резистор установлен в положении минимального сопротивления, к ячейке приложено полное напряжение 4,5 В и светодиод гореть не должен. Затем разъем по очереди подключаем к двум другим ячейкам и убеждаемся, что все светодиоды погашены.
Затем плавно увеличиваем сопротивления переменного резистора, контролируя при этом
мультиметром напряжение на выходе резистора относительно минусового провода. При увеличении сопротивления резистора напряжение, подводимое к ячейке, начнет плавно уменьшаться и при достижении 3,18…..3,2 Вольт должен загореться светодиод. При уменьшении сопротивления резистора, т. е. при возрастании подводимого к ячейке напряжения выше 3,2 В, светодиод снова погаснет. Таким образом, переставляя разъем по очереди на соответствующие контакты, проверяем все ячейки. Порог включения можно изменять
подбором резистора 4,3 ком. При этом его можно составить из 2х резисторов, например

если поставить 2 ком + 2 ком = 4 ком (порог включения 3,14 В) , а 3,3 ком + 1 ком = 4,3 ком
(порог включения 3,18 В) У меня резистор 4,3 ком составлен из двух (3,3 ком + 1 ком) , что видно на фотографиях. Размеры печатной платы 3х ячеечного Индикатора 30 х 30 мм.
Регулируемый стабилитрон TL431 - широко распространенная деталь и продается в радиомагазинах. Кроме того, они используются практически в любом импульсном блоке питания (адаптере) для управления оптроном защиты.
Сделал несколько штук, работают нормально, обеспечивают своевременную индикацию.
Поэтому рекомендую для повторения авиамоделистами - радиолюбителями!

Общий вид.




Принципиальная схема.

Монтажка


Вид со стороны деталей. Размер платы 30 х 30 мм.

Вид со стороны дорожек. Размер платы 30 х 30 мм.

Светодиоды любые супер яркие, синего свечения. Синие лучше всего заметны в солнечный день.

В статье предлагаются два варианта индикатора, цвет свечения которого, по мере разряда батареи, изменяется от зеленого до красного. Существует огромное количество схем, предназначенных для выполнения таких функций, но все из них, на мой взгляд, слишком сложны и дороги. Для моего индикатора требуется всего пять компонентов, один из которых - двухцветный светодиод.

Простейший вариант показан на Рисунке 1. Если напряжение на клемме B+ равно 9 В, будет светиться только зеленый светодиод, поскольку напряжение на базе Q1 равно 1.58 В, в то время, как напряжение на эмиттере, равное падению напряжения на светодиоде D1, в типичном случае составляет 1.8 В, и Q1 удерживается в закрытом состоянии. По мере уменьшения заряда батареи напряжение на светодиоде D2 остается практически неизменным, а напряжение на базе уменьшается, и в какой-то момент времени Q1 начнет проводить ток. В результате часть тока станет ответвляться в красный светодиод D1, и эта доля будет увеличиваться до тех пор, пока в красный светодиод не потечет весь ток.

Рисунок 1. Базовая схема монитора напряжения батареи.

Для типичных элементов двухцветного светодиода различие в прямых напряжениях составляет 0.25 В. Именно этим значением определяется область перехода от зеленого цвета свечения к красному. Полная смена цвета свечения, задаваемая соотношением сопротивлений резисторов делителя R1 и R2, происходит в диапазоне напряжений

Середина области перехода от одного цвета к другому определяется разностью напряжений на светодиоде и на переходе база-эмиттер транзистора и равна приблизительно 1.2 В. Таким образом, изменение B+ от 7.1 В до 5.8 В приведет к смене зеленого свечения на красное.

Различия в напряжениях будут зависеть от конкретных комбинаций светодиодов и, возможно, их будет недостаточно для полного переключения цветов. Тем не менее, предлагаемую схему все равно можно использовать, включив диод последовательно с D2.

На Рисунке 2 резистор R1 заменен стабилитроном, в результате чего область перехода становится намного более узкой. Делитель больше не оказывает влияния на схему, и полная смена цвета свечения происходит при изменении напряжения B+ всего на 0.25 В. Напряжение точки перехода будет равно 1.2 В + V Z . (Здесь V Z - напряжение на стабилитроне, в нашем случае равное примерно 7.2 В).

Недостатком такой схемы является ее привязка к ограниченной шкале напряжений стабилитронов. Еще больше усложняет ситуацию тот факт, что низковольтные стабилитроны имеют слишком плавный излом характеристики, не позволяющий точно определить, каким будет напряжение V Z при малых токах в схеме. Одним из вариантов решения этой проблемы может быть использование резистора, включенного последовательно со стабилитроном, чтобы иметь возможность небольшой подстройки за счет некоторого увеличения напряжения перехода.

При показанных сопротивлениях резисторов схема потребляет ток порядка 1 мА. Со светодиодами повышенной яркости этого достаточно для использования прибора внутри помещения. Но даже такой небольшой ток весьма значителен для 9-вольтовой батареи, поэтому вам придется выбирать между дополнительным потреблением тока и риском оставить питание включенным, когда необходимости в нем нет. Скорее всего, после первой внеплановой замены батареи вы почувствуете пользу от этого монитора.

Схему можно преобразовать таким образом, чтобы переход от зеленого к красному свечению происходил в случае повышения входного напряжения. Для этого транзистор Q1 надо заменить на NPN и поменять местами эмиттер и коллектор. А с помощью пары NPN и PNP транзисторов можно сделать оконный компаратор.

С учетом довольно большой ширины переходной области, схема на Рисунке 1 лучше всего подходит для 9-вольтовых батарей, в то время как схема на Рисунке 2 может быть адаптирована для других напряжений.

Этот несложный прибор оповестит о разряде 12-вольтовой (например, автомобильной) аккумуляторной батареи звуком зуммера. Появление звукового сигнала будет означать, что аккумулятор разряжен и требует подзарядки. Порог чувствительности компаратора составляет приблизительно 0,2 вольта.

Схема собрана всего на трёх транзисторах и доступна для повторения даже начинающими радиолюбителями.

В режиме ожидания потребляемый ток около 3 ма, а при работе зуммера - около 4 ма.

Схема устройства приведена на рисунке:


Левая часть схемы на транзисторе Т1 представляет из себя компаратор, определяющий порог напряжения, ниже которого не должен разряжаться аккумулятор. Правая часть схемы на транзисторе Т2 - это звуковой генератор, а Т3 - усилитель.

Состояние разряда аккумулятора приблизительно можно оценить ориентируясь на данные таблицы:

Напряжение, В Заряд, %
12,6-12,9 100
12,3-12,6 75
12,1-12,3 50
11,8-12,1 25
11,5-11,8 0

При подключении питания 12 вольт устройство начинает работать сразу, если же этого не произошло, значит, возможно, где-то в монтаже допущена ошибка.

Регулятором R1 следует добиться пропадания звука зуммера при заряженном состоянии аккумулятора, тогда зуммер включится, если напряжение снизится примерно на 0,2 вольта.

Проверка схемы сводится к простым действиям.

Отсоединяем коллектор транзистора Т1 от схемы, подключив питание, и убеждаемся, что звуковой генератор работает. Тональность звука можно изменить (если не устраивает) подбором номинала конденсатора С1 . После этого восстанавливаем соединение коллектора Т1 по схеме.

После этого можно перейти к настройке компаратора, собранного на транзисторе Т1 . Для этого, включив питание, измеряем вольтметром напряжение на стабилитроне ZD1 : оно должно быть 5 вольт. Далее плавно поворачиваем движок потенциометра R1 и добваемся появления звукового сигнала. При плавном повороте в обратную сторону движка этого потенциометра звук должен пропасть.

Для финальной настройки желательно запитать схему от регулируемого источника постоянного тока напряжением до 15 вольт. Подключаем параллельно питанию цифровой мультиметр в режиме вольтметра, выставляем по этому вольтметру напряжение, соответствующее предельному уровню разряда аккумулятора (по таблице выше) и регулировкой R1 добиваемся пропадания звукового сигнала. Фиксируем движок R1 в найденном положении. Затем на источнике питания начинаем плавно понижать напряжение до момента появления звукового сигнала зуммера и убеждаемся, что оно примерно на 0,2 вольта ниже, чем было установлено ранее.

При каком уровне понижения напряжения должно сработать звуковое оповещение, каждый пользователь может выставить регулятором R1 индивидуально.

На базе этой схемы можно сделать нагрузочную вилку для проверки аккумуляторов под нагрузкой, если дополнить схему мощным проволочным резистором, сопротивлением порядка 1,2 Ом, параллельно проводам питания схемы. Такая нагрузочная вилка позволит проверять степень просадки напряжения аккумулятора при протекании тока около 10А, допустимый уровень просадки выставляется, как и ранее, потенциометром R1 .

В схеме в качестве транзистора Т2 следует ставить только указанный тип транзистора 2SC945. Т1 и Т3 можно заменить на аналоги, например 2SC1213, 2N2222 или подобные им отечественные КТ315, КТ503. Стабилитрон ZD1 - любой маломощный на напряжение стабилизации 5 вольт. Буззер – обычный электродинамический излучатель с сопротивлением обмотки около 50 Ом (такие применяются на компьютерных платах).


Итак, вы видите принципиальную схему сигнализатора маленького напряжения для автомобильного свинцово-кислотного аккумулятора. Очень важно следить за зарядом аккумуляторной батареи, чтобы предотвратить чрезмерный разряд АКБ, который чреват негативными последствиями для вашей перезаряжаемой батареи мы сделаем несложное устройство, следящее за уровнем напряжения на выводах АКБ.


Собрав несложную и весьма полезную схему звукового сигнализатора разряда, вы сможете оперативно узнать о низком напряжении на клеммах аккумулятора и предпринять меры: зарядить его обыкновенным сетевым зарядным устройством или через встроенный генератор на транспорте.

Схема состоит из двух частей:
первая, следящая за разницей потенциалов и вторая – элементарнейший звуковой генератор . Разберем принцип работы.

Сначала последовательно включены резистор стабилитрон и еще один резистор. На стабилитроне падает то напряжение, на которое он рассчитан, в нашем случае 10 В, в его технической документации (1N4740A) указана максимальная мощность 1 Ватт, напряжение стабилизации 10 В (ZENER VOLTAGE RANGE), значит максимальный допустимый ток 1W/10V=0.1A, но на самом деле 91 mA (REGULATOR CURRENT), номинальный же ток стабилизации равен 25mA (TEST CURRENT).


Посчитаем сопротивление двух резисторов. Как известно при последовательном включении ток протекает на всех элементах цепи одинаковый, а вот падение напряжение на разных компонентах разниться. По условию на стабилитроне стопроцентно должно падать около 10 В, максимальное напряжения на клеммах аккумулятора 14 В, значит 14-10=4 В должно остаться в сумме на двух резисторах R=4V/25mA=160 Ohm. Но на самом деле нам недопустимо такое большое потребление на холостом ходу, поэтому мы берём резисторы с сопротивление значительно большим, вследствие чего ток уменьшается и на стабилитроне будет падать меньше чем 10 В. Мною были выбраны на 20 кОм постоянный и переменный на 3 кОм. Ток потребления будет всего около 200 мкА.

Для открытия транзистора VT1 нужно подать на его базу плюс, а на эмиттер минус, напряжение примерно 0,7 В (зависит от вашего экземпляра) за это у нас отвечает нижний резистор R2, для точной настройки используется подстрочный резистор.

К коллектору транзистора VT1 подключена база VT2. Таким образом, когда напряжение более нормы (на аккумуляторе) VT1 открыт и база VT2 подключена в минусу – он закрыт. Когда же напряжение на аккумуляторе станет меньше нормы (вы сами выбираете норму) первый транзистор закроется и теперь ничто не мешает второму быть открытым через резистор 10 кОм.


Разбор генератора звуковых колебаний: состоит он из двух транзисторов разной проводимости. Предположим, что в начальный момент времени всё транзисторы (VT3 и VT4) закрыты из-за того, что через динамик и конденсатор подается плюс на PNP транзистор. Как только конденсатор зарядиться полностью он больше не станет проводить ток для дальнейшего закрытия VT3 и теперь ничто не мешает ему открыться через резистор R4. Когда VT3 откроется через его ЭК «потечет плюс” на базу NPN VT4 и тот также откроется – теперь через КЭ четвертого транзистора и динамик протекает ток (происходит щелчок). Во время этого щелчка конденсатор оказывается замкнут через резистор и открытый переход КЭ VT4, естественно он разряжается, причём происходит это определенное время, которое зависит от ёмкости самого конденсатора и величины сопротивления резистора. Как только конденсатор разрядиться VT3 снова закроется через катушку динамической головки и C1 и далее всё пойдет также само. Несмотря на простоту RC звукового генератора на практике он не всегда стабильно работает.

Резистор R5 100 Ом здесь ограничивает ток базы NPN транзистора.


Настройка схемы
Мы должны сделать так: подключить к схеме регулируемый источник питания, предварительно настроив напряжение равное 12 Вольтам (что соответствует разряду в 75% без подключённой нагрузки (можно выбрать и другое значение, таблица ниже) и изменяя сопротивление подстрочного резистора RV1 добиваемся того, чтобы при маленьком обороте болтика резистора начинал пищать динамик, вот это и вся настройка.


То есть мы устанавливаем такое напряжение между базой и эмиттером VT1, когда при недопустимом разряде транзистор закрыт (у моего транзистора напряжение насыщение вышло 658 mV) и при малейшем увеличении напряжения на АКБ неизбежно растет падение напряжение на R2 и следственно на БЭ VT1 подается уже больше U БЭ - он открывается, закрывая VT2.

Убеждаемся еще раз в правильности конфигурации путем изменения напряжения ЛБП, должно быть вот так: при U=12V и более всё тихо, а при U менее 12V издается писк.


Схемка очень простая и собрал я её используя компоненты для поверхностного монтажа, что поспособствовало максимальной миниатюризации платки, размеры 24 на 13 мм. Потребление в автономном режиме вышло в ~2 mA, а при сигнале достигает 15-20 mA.

Скачать плату:


Корпус – это параллелепипед пластмассовый, такая коробочка, в которой я сделал отверстие для буззера.